11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

A Secure Gateway for Enabling Application
Specific Integrated Circuit Design Collaborations

Steve Bogol*, Paul Brenner*, Adam Brinckman*, Ewa Deelman?, Rafael Ferreira da Silva
Sandeep Gupta®, Jarek Nabrzyski*, Soowang Park®, Damian Perez*, Sarah Rucker*, Mats Rynge?, Ian J. Taylor*!
Karan Vahit, Matt Vander Werf*, Sebastian Wyngaard*
*Center for Research Computing, University of Notre Dame, Notre Dame, IN, USA
Hnformation Sciences Institute, University of Southern California, Marina Del Rey, CA, USA
§Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
TSchool of Computer Science & Informatics, Cardiff University, Cardiff, UK

Abstract—Leading CAD companies are currently developing
virtual secure environments to help lower the barriers for
adopting new ASIC design flows. However, such services are pro-
prietary, lack key features, and present barriers for collaboration
and sharing. This paper covers the transition of the CRAFT
repository, originally designed as a repository for discovery
and documentation of ASIC design flows, to a fully secure
environment called the CRAFT Vault hosted in Amazon Gov
Cloud that allows designers to collaborate and actually implement
these flows. The Vault is a fully configured environment that
is deployed with all the necessary electronic design automation
tools and IP making it easier for end users to implement a
CRAFT Design Flow, augmented with Blockchain functionalities
to provide a non-repudiable audit trail of what happened and
when.

Keywords—Collaborative Environments, Design Flows, Chip
Design

I. INTRODUCTION

A new Application-Specific Integrated Circuit (ASIC) de-
sign flow often faces high barriers for adoption, even by
experienced design teams. New design flows typically require
new tools; Intellectual Property (IP)/licensing considerations
of acquiring new tools; installation of new tools and asso-
ciated license servers; and the need to ensure that a user’s
environment are properly configured and that the new settings
do not interfere with other installed software. Additionally,
new design flows typically require new models and libraries,
especially Process Design Kits (PDKs) (which contain all
information provided by the semiconductor foundry regarding
fabricated devices), cell libraries, libraries of larger IP mod-
ules, and scripts for designs. IP/licensing considerations make
all this acquisition time-consuming and expensive, strongly
deterring even the evaluation of promising new design flows.
Increasingly, members of design teams span different parts of
a large organization or even multiple organizations. Hence,
coordinating the execution of a new design flow on various
computational resources available to sub-teams is likely to be
time consuming and inefficient.

To tackle such challenges, leading CAD companies are
beginning to develop commercial services, such as Cadence
VCAD [1]. However, such services are proprietary, lack key
features, and present barriers for collaboration and sharing. In

particular, these provide a private environment for each design
team. In contrast, US Department of Defense (DoD) programs
such as DARPA CRAFT [2] require sharing of design flows,
IP, and best practices across design teams while protecting
all information about specific designs being carried out by
individual design teams. Also, the commercial services are
typically limited to the vendor’s own tools and design services
and hence not optimized for rapid evaluation and adoption of
new design flows, especially those that use tools and IP from
multiple vendors. In short, commercially available services are
difficult to adapt to serve the needs of programs like CRAFT
that are trying to develop new tools and flows and that are
interested in building a new community of design teams.

In this paper, we present the CRAFT Secure Vault, an
extension to the CRAFT Repository [3[] gateway, that provides
design teams ready access to new design flows, tools, and IP,
and an environment that supports the unique combination of
rapid learning and quick time to design productivity, security,
access control, and community-wide sharing of best practices
of DoD programs like CRAFT.

II. REQUIREMENTS

The goal of the CRAFT Secure Vault is to provide dis-
tributed design teams a ready-to-use platform that streamlines
the process which otherwise requires teams to acquire new
tools and IP from multiple vendors, install and configure these
tools on their computing platform, and learn a new design flow
using voluminous user manuals. It also provides a collabora-
tive environment for geographically and institutionally diverse
design teams to rapidly learn and evaluate the new flow and
low time-to-productivity for ASIC design using new flows,
tools, and IP.

To achieve the above goal, the CRAFT Vault has been
designed to support the following use cases:

1) From the view of the design team, for each design flow
hosted by the Vault, all tools required are installed and
ready to use, simply upon the completion of an off-the-
shelf licensing agreement by the team (more ahead). Also,
all required PDKs, models, IP libraries, are also pre-
installed upon completion of the agreement.



11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

2) Each hosted design flow is captured precisely and repre-
sented using interactive views of the design flow for rapid
learning. Also, each design flow and associated tools,
PDKs, models, and IP libraries are tested thoroughly
by using the flow to design appropriate example Very
Large Scale Integration (VLSI) modules (called cores)
for integration into the design of ASICs. The instructions
for each step of a design flow are accompanied by design
files used/obtained during the design of the example VLSI
cores, and these instructions are refined based on the
example design experience to make the new design flow
more accessible.

3) Each design team is provided an environment for collab-
orative design which supports multiple design projects,
sharing of best practices with members of the team
and selected best practices with the wider community
of design teams. Further, each design team may bring
additional tools and IP to the Vault and fork from a hosted
design flow to modify it for its unique needs.

4) The tools, PDKs, models, and IP libraries hosted in the
Vault are governed by off-the-shelf licensing agreements
designed to fit the needs of the range of design teams
likely to use the Vault. Each design team may customize
the licensing agreement by selecting the tools, PDKs,
models, IP libraries, and the level of resources for col-
laboration and computing they wish to option. A single
licensing agreement will make a customized instance of
Vault available to the user and reduce the barrier to entry
by avoiding prolonged delays associated with lengthy
licensing, installation, customization, and testing.

5) From the view of the vendors/developers of tools, PDKs,
models, and IP libraries, the Vault guarantees that each
design team can only access the items it has optioned.
The Vault is designed to ensure that PDKs, models,
and IP are protected, i.e., cannot be exported outside,
unless designated by the vendor as open. At the same
time, each design team is allowed to export reports of
simulations, characterization, and verification of their de-
sign. Out-of-Vault design improvements, simulation/ver-
ification, and/or tape-outs (i.e., sending the design to a
foundry for fabrication of chips) are only permitted if the
design team has separately secured out-of-Vault licenses.

III. SYSTEM ARCHITECTURE

Our broad goal is to provide a system that is capable of
provisioning a secure environment, called the CRAFT Secure
Vault, for a group of CRAFT collaborators that span a number
of different teams, each having particular authentication and
authorization privileges to tools, IP, and design data. A CRAFT
Secure Vault is a secure collaborative environment, synergistic
to a collaborative project in the CRAFT repository [3], which
gives users direct access to ASIC design tools and data
engineering capabilities, regardless of geography, so that team
members can work in a predictable environment that defines
securely who has access to what. It also avoids the lengthy
process of acquiring tools (and their dependencies), IP, system

setup, and administration. The high level overview of the
CRAFT Secure Vault architecture is shown in Fig.

In order to lock down access to the CRAFT Secure Vault
(Fig. [IHeft), participants cannot access it directly, instead
they connect via a client side gateway using a single secure
communication channel [4]]. The gateway enforces the traffic
of information to and from the Vault. The architecture of the
Vault therefore consists of three core components, namely, a
(1) secure CRAFT gateway, a (2) secure CRAFT Vault, and
a (3) secure virtual private channel that securely connects the
two environments.

From a CRAFT user’s perspective, the result is that they
are provided seamless access to a remote desktop in a secure
Vault environment from their own desktop. From a technical
standpoint however, this remote desktop connection involves
a secure virtual private connection to an AWS GovCloud [35]
hosted client side gateway and to a second AWS GovCloud
virtual private cloud (VPC) environment, and an authorization
and connection proxy to one of multiple secure Linux (or
Windows) systems to provide remote desktop access to a
secure Vault that hosts IP, data, and tools for collaboration
in ASIC designs.

IV. SYSTEM DESIGN

In addition to our goal of providing a standalone, functional
and secure environment for designing chip flows, we also aim
to capture and provide an audit trail for the whole design
process. We decided to leverage Blockchain as a means of
hooking the various components into a common distributed
ledger. The CRAFT Secure Vault consists of the following
4 main components, with Fig. [J] illustrating the interaction
between the various pieces.

1) Blockchain: The data backbone runs on a distributed
ledger with a data store per node for storing sensitive
data.

2) Secure Vault Servers: A full audit trail is collected for
each server so we have access to who did what and when.

3) ASIC Design Flows: To support the existing CRAFT
repository, visualization tools have been ported to the
CRAFT Secure Vault environment.

4) Collaborative Workflow Tracking: To record transactions
on the ledger when users run scripts on certain data for
a design flow.

A. Blockchain

A Blockchain [6] is a distributed ledger that provides a
shared write only file system. Data is stored through con-
sensus, meaning that all parties sign off on each transaction.
Once data is written it cannot be removed by any single
entity and hence, it provides a non-repudiable audit trail of
what happened and when. All Vault implementations sit on
such an underlying Blockchain system, for interaction with
the distributed ledger.

Currently, we are using three Ethereum [7]] nodes per Vault
virtual private network (VPN) deployed in the Vault environ-
ment. We plan to augment this deployment with additional



11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

e il Rt -
| Remote |
| Desktops | Remote
| = A Desktop
| Data, tools, | (6] Client Sl
| design flows, | Secure R
IPs & other | Channel
services e.g
! license servers | S
| | AW GovCloud (US) GovCloud US Region
| |
| = Automation | /
| P 2% 1
| C;;E!Z‘f,';jf;“" 1’ Pegasus | P e CRAFT REPOSITORY
| L ____ | Viz tools ] Client
| CCRAFT Vault KeyStore IP/Design Flows |
| Signed | oy ‘ EC2 Compute node
a2 T W= |
| %. + - - > . | ? Identity & Access Management (IAM)
Blockchain Distributed Ledger I R
Y | % \iryal Private Cloud (VPC)
Sy ————mmmmm e — e — e — =~ w
AWS GovCloud (US) GovCloud US Region
Fig. 1: Architectural overview of the CRAFT Secure Vault.
Viz tools = * Blockchain & §
IP/Design Flows P ) 0 A
~ 3 &=
' () (ﬂ‘ .
. '
* = Blockchain Per Vault ;
! = Distributed Consensus |
K with root Ethereum Node ,
. + three peers (one an 0
Remote ' Admin node) o
D ! = Transactions - content are |
P Localhost App + API for supporting design flow/IP updates ' Encrypted and hashed
+ = No data stored on ledger

= Script Run with Data + IP

l

= New Data

Q:« i
—»

= User Connected

= User Disconnect

« DataUploaded =
for User

= Script Run with Data/IP

Data, tools, design flows, IPs = New Data

= New Scripts
= NewIP

Secure Vault Servers

= Server user logged in
= Server user logged out
= Other events?

Group of Linux Remote
Desktops per Team

= New Scripts
= NewlIP

& other services e.g. license
servers

Hashes

Signed

CRAFT Vault KeyStore (oSl

Script Fommm—m—mm e Ve )
[ i ats
| CRAFT Vault Script
Input Data | Digital Signature | g Outut

Script, IP and Data Verification Component

erified Output
Dat

Fig. 2: Overview of the CRAFT Secure Vault Software Component Design.

Ethereum nodes one which will be hosted by the University
of Notre Dame, and another controlled by DARPA in the near
future. Addition of more nodes results in them being involved
in the consensus, resulting in a stronger consensus backbone,
insuring a tamper proof audit chain of events.

The Blockchain creates a cryptographic fingerprint (a hash)
unique to each block and a consensus protocol, the process
by which the nodes in the network agree on a shared history.
The hash serves as proof that the miner who added the block
to the Blockchain did the computational work. It also serves
as a kind of seal, since altering the block would require
generating a new hash. Verifying whether or not the hash
matches its block is easy, and once the nodes have done
this they update their respective copies of the Blockchain
with the new block. This mechanism makes the Blockchain
tamper proof, or “immutable”. Since, in CRAFT, each node
has similar computational capability, it makes it impossible for
one party to change the audit trail or events.

The general approach for interacting with the Blockchain in

the Vault is to store data locally with the Blockchain only stor-
ing the hash of the data (anything used by CRAFT designers
e.g. a design flow, IP, PDK, etc). Hence, it is sensitive material
and as such, it is never stored on the Blockchain, it is kept
on the local filesystem in the Vault. But because data maps to
hashes, it provides signed non-repudiable proof that an event
happened e.g. design flow has been updated, someone logged
in, a script was run with this data etc. Copies of actual data are
stored privately on each Vault using a write only filesystem.

In the Vault, we use Blockchain in two core areas:

o Design Flow Visualization and Editing, which consists
of a Web GUI for visualizing and editing the design flows
and a backend API that stores design flow version hashes
on the Blockchain (distributed ledger) and design flows
themselves on a local filesystem (local to the vault).

o Collaborator Workflow Tracking, which consists of a
script wrapping approach and a backend API that stores
verification/integrity data on the Blockchain (distributed
ledger) and a local filesystem (local to the vault).



11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

B. ASIC Design Flows

Each CRAFT performer team is developing a user-oriented
version of their new design flows that can be used by DoD
ASIC designers. As such, their representations are specific to
their individual design approaches. Since the CRAFT repos-
itory bridges between the various flows and the target DoD
design community, we have developed a way for designers
to capture, document, store, and visualize such flows in a
systematic and common methodology. Initially, we conducted
several requirements gathering meetings (in-person, telecon-
ferences, email exchanges, etc.) to create a high-level view of
the design flow (no flow specific information was required at
this point). Then, we extracted expert knowledge to expand the
high-level flow into a complete running example flow, which
included information about options, flow controls, and data.
These interactions allowed us to iterate towards a common
schema for documenting the flows.

One of the major capabilities that we wanted to demonstrate
in this representation was the ability for the users to visualize
and edit these flows, and perform flow validation (syntactically
and semantically). We decided to describe and formalize the
template for the design flows in JSON format, where the
schema has three major sections, tools, files, and stages. The
tools section describes a list of tools that are used within
the flow and specifies tool functionality and specific options
or configuration parameters. The stage section describes the
individual steps of the flow, and includes its input and output
files (which may be provided by external vendor tools), a tool
(referenced by the its unique identification), and flow controls,
which capture the decision flow based on the tool output.
We provide the users two options for describing their flows:
(i) upload a JSON document conformant to the schema—
the repository Ul automatically validates and identifies any
errors in the document; or (if) via the use of an interactive
visualization tool, as presented in [3].

C. Collaborative Workflow Tracking

Many hardware modules (i.e., IP blocks incorporated in a
hardware design) must interoperate with other hardware and
software modules. Across multiple vendors, such interoper-
ability is often ensured by adherence to industry standards
(e.g., USB 3.0 for serial ports and DDR4 for process-memory
interfaces). Even when a complex ASIC is designed within
a single organization, various sub-teams need to coordinate
the design to ensure interoperability. Such design coordination
typically takes the form of the sub-teams agreeing to adhere
to specific released versions of key IP modules. Since the
CRAFT design flow also includes IP modules created using
generators and other scripts and tools, it is also necessary
for the design framework to include adherence to specific
releases of scripts and tools during design and use. Further,
achievement of desired design robustness may also require
various sub-teams to adhere to specific releases of scripts
and tools for verification of design’s correctness, including
adherence to industry/internal standards.

Currently, the CRAFT repository does not provide a mecha-
nism to ensure adherence between produced outcomes and the
scripts, tools and input data used to generate them. To address
this issue in the Vault, we developed a system to provide the
necessary generation and verification steps using cryptographic
encryption. The generation step encrypts outcomes, i.e., output
data, based on the scripts, tools, and input data used for
generation. The verification step applies then the reverse
operation, so that a user that would like to make use of an
output can verify that it adheres to the versions/metadata of
the scripts, tools, and input data used for its generation.

V. IMPLEMENTATION
A. Blockchain Implementation

In order to prepare the CRAFT Secure Vault for operations,
we must generate an identity for the vault server itself. We
then need to generate users in a global way (one single Vault
account) but allow those users to access different vaults in
different ways. We can achieve a number of these core goals
by interacting with the ALADDIN framework.

ALADDIN and the CRAFT Secure Vault: We have developed
a Blockchain service architecture, called ALADDIN (Any
Ledger, Any Distributed Data using Intelligent Networks),
which incorporates the following services:

e A common interface to different distributed ledger
Blockchain systems;

o A common interface to different data stores;

o A conceptual model, using assets and transactions, that
define the relationships between things that need to be
tracked (assets) and how that tracking occurs (transac-
tions) to feed into smart contracts;

o A Smart Contract Design Tool to help generate smart con-
tracts automatically from the conceptual model, defined
using a Ul; and

o An auto API generator tool that converts the ALADDIN
conceptual model to a Node.js REST API to help software
integration with the Smart Contract.

Defining an ALADDIN application: Each ALADDIN appli-
cation is defined using assets and transactions that are written
for a specific Blockchain system, along with data (files) to be
saved in a third party data store. We use the ALADDIN private
Ethereum [7]] network adapter for Blockchain, and IPFS [§]]
or MongoDB [9] for the data store. ALADDIN Data Bundles
wrap data for an asset into an asset Manifest, which specifies
data relationships using links to hashes that represent the off-
chain data. We use assets to represent entities, (design flows,
datasets, or scripts) and transactions to represent updates,
or usages of those assets. Once assets and transactions are
defined, ALADDIN converts this specification into a format
that can be used with the Blockchain system by generating:
(1) a smart contract (in Solidity for Ethereum); and (2) a
custom business REST API that is generated for the assets
and transactions that the user defined. This allows client
applications and SDKs to be written directly against this REST



11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

@
<
i
Vault Server
)
EC2
Remote
Desktop
Transactions: Design
Flow Revisions
1. Revision 1
2. Revision 2
N. Production Version
Asset: Design Flow 1p2 Y3aqN
JSON File Assets [N g Transactions
) J¥%, N Metadata + hash of
Design Flow i‘ Design Flow
Vault Owner Eth1 Eth2 Eth3
1o A A A
<] v vV ¥V
[ o]

Ethereum  DARPA  Ethereum
Root Ethereum Vault
Node Node Node

Vault Server Data Store Vault Ledger

Fig. 3: A schematic showing how the design flow is stored
onto the ledger and data store.

API, which in turn converts the calls into Smart contract calls,
which in turn writes data to the distributed ledger network.

ALADDIN Tooling: Our approach has involved creating some
flexible developer-based tooling to help generate backend
Blockchain implementations and APIs, which includes a:

o Smart Contract Design Tool that can auto create
Ethereum Solidity Smart Contracts from an asset (design
flow) and transaction (change on the design flow) model.

o We use the same underlying model in our API Genera-
tion tool, which can parse a Smart Contract to create a
Swagger OpenAPI specification [10] and then auto gen-
erate an ExpressJS [11]] API in Javascript for interfacing
with the Smart contract and Blockchain.

B. Design Flows

The CRAFT repository Design Flow mechanism is based
on an Ember]JS App [3[], which talks to backend filesystem
for storing the design flows. The repository also performs
versioning, so the “time machine” uses this functionality to
browse previous versions of the design flow. To enable this
capability in the Vault we have:

o Redesigned the EmberJS App so it talks to a local
backend;

o Created a new backend capable of storing the different
versions of the Design Flows, which also connects to
our common distributed ledger backbone, (save or update
transactions are saved). These tools enable flow editing
within the Vault system.

Here, an asset is a design flow and transactions are updates
on this initial design flow. Then, when changes are made
to that design flow, transactions on that original design flow
are written along with the changes to it. This allows us to
create a non-repudiable chain of transactions for such a flow
representing versions of the design flow made by the users.

Fig. 3] shows this process in detail. The CRAFT Secure
Vault server, shown on top, hosts the design flow application
in the form of an Ember]JS Web app. The App then talks to

CRAFT Vault API ™

default v

Fig. 4: The Design Flow API

the ALADDIN framework, which splits the request (a design
flow) into the data component (the JSON design flow file) and
a hash of the data. The Design Flow itself is stored in the data
store which is local (private) to the vault itself and the hash is
recorded on the blockchain to tie this event into the distributed
ledger. If the JSON design flow changes then the blockchain
is broken and the system will know that there was an attempt
to tamper with the local data.

The API is used to interface with the blockchain for storing
hashes of Design Flows. The data, i.e., design flows, are stored
privately on each vault server, using a write only filesystem
(IPFS). The purpose is to provide a non-repudiable audit of
each version of a design flow, identifying the author at each
stage. In order to port this to the vault environment, we have
migrated the EmberJS App to an AngularJS/Blockchain API to
work locally in the closed Vault secure environment — since the
CRAFT repository backend has multiple outgoing connections
to support its infrastructure. The local App communicates
(locally) via a Blockchain ExpressJS [11] API, generated by
our Smart Contract Design and API Generation Tools. The
app provides an editor view and a screen that shows all
versions of the design flow. A user can simply click the version
they want to view and the app will update the JSON flow
accordingly. Fig. @] shows the backend API that interfaces with
the blockchain. This shows two endpoints: one to create a
design flow, which is used to initialize the app with the design
flow that was imported from the CRAFT repository; and one
to update Design Flow that allows revisions of this design flow
by transacting Ethereum revisions on it.

C. Collaborator Workflow Tracking

For the design flow implementation, we developed the
underlying blockchain implementation and implemented a
prototype of a lightweight tool for supporting design flows
within the Vault. In creating the API, we built tooling that
allowed us to generically develop smart contracts and build
APIs from them automatically, to support extensibility for the
other Blockchain uses we have in CRAFT.

To track the designer’s collaborative workflow, we use the
same tooling to create a Blockchain API for addressing the
Data security and integrity assurance task. Since the CRAFT
design flow includes IP modules created using generators and



11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

Blockchain

Hash(es) stored for data files
Data Interface Multiple Data files, metadata, file storage
Flow Scripts Auto Generated Scripts (bash)

Flow JSON Flow

Vault Server
EC2

Fig. 5: Data security and integrity assurance layerecl approach.

other scripts and tools, it is also necessary for us to track
specific releases of scripts and tools that were used during
design and verification. In this task therefore, we set out to
design a system that tracks a designer’s use of the underlying
IP modules, scripts, tools, and data so that we can record the
specific versions or releases of scripts and tools that were used
for verification purposes. Each tracking event is stored on a
distributed ledger in AWS GovCloud for transparency, support
and for audit purposes. Fig. [5] shows the general overview of
the different layers of the approach.

Design Flows: A number of extensions were made to the
design flow specification to enable realization of the execution
of the design flow scripts. These modifications included the
addition of file system locations specifying the physical paths
of the IP, scripts, data, and so on. Essentially, we converted
the passive design flow specification that existed previously
and made them actionable, so that they could run within a
command line environment. For each stage of the design flow,
a Linux shell script is generated to automate (when possible)
the steps involved in the flow generation.

Flow Scripts: The execution scripts mentioned above are
organized into five steps: (1) creation of a blockchain session;
(2) registration of the input data as transactions (a transaction
is performed per input file); (3) execution of the flow’s stage
program (s); (4) registration of the output data produced by
the previous step (a transaction is performed per output file);
and (5) finalizing the session.

Data Interface: To connect the Flow Scripts to the blockchain,
we designed a set of interfaces that could be used to track a
particular design flow session:

e Create Session: starts a working session to be tracked. On
the blockchain, we create a transaction that identifies a
new thread of transactions. We call this an asset (running
design flow) that we wish to track. Once the asset has
been registered, transactions can be written against it.

e Transaction: records a transaction on the blockchain
using the address to the asset, registering a file hash and
metadata about the file being used. The file hash is a
fingerprint (i.e. a SHA2 hash) of the contents of the file
being recorded.

e End Session: ends the session being tracked. Once a
session has ended, it cannot be reopened, but a new
session can be started.

Blockchain: The data Interface interacts with:

e The Blockchain. To write to the Blockchain, the Node.js
script interfaces with the API that was generated to the
Ethereum Blockchain for this application. The API is
basically a file oriented API that allows the application
to specify the filename, its file hash, and other metadata.

e A Data Store, which is responsible for the storing of data
files that are used by a designer.

The CRAFT Blockchain API is based around a Web API
concept. It contains adapters to the Blockchain and it provides
interfaces to connect to IPFS []g[], which is a lightweight,
distributed, versioned, Web-based file system, designed specif-
ically for blockchain use. To cope with large design files (> 15
GBs in some cases), we redesigned the approach to interface
through the file system rather than the Web based interface.
To achieve this, we implemented an adapter that manages file
usage on the local file system. The scheme, first generates a
hash of a file that a designer wants to register. It then checks
to see if this file is already being tracked. If so, then a copy is
not stored again, because the hashes already matches a file that
has been stored in the file system. If the file has not previously
been tracked then it is copied to the file system and the hash
code is used as its filename, for future checking. The resulting
hash is then passed to the Blockchain adapter to be stored on
the Blockchain. For the most part, only the hashes are stored,
to track usage and so the approach is scalable with respect
to the file space required for tracking. A shortcoming of this
approach is the time it takes to generate the hash. To generate
a SHA?2 hash of a 20GB file can take more than two minutes.
We are investigating solutions to address this issue currently.

VI. CONCLUSION

This paper covers the transition of the CRAFT repository,
originally designed to be a repository for users to discover and
document ASIC design flows to a fully secure environment
called the CRAFT Vault hosted in Amazon Gov Cloud that
allows designers to collaborate and actually implement these
flows. The Vault is a fully configured environment that is
deployed with all the necessary Electronic design automation
tools and IP making it easier for end users to implement a
CRAFT Design Flow. In addition to the technical challenges,
we had to invest a fair amount of effort to get the legal agree-
ments in-place for hosting the tools and providing necessary
licenses for our users, which re-iterates one of the motivating
reasons for developing the Vault in the first place.

Acknowledgments. This work was funded by DARPA under contract
#HRO0011-16-C-0043 Repository and Workflows for Accelerating
Circuit Realization (RACE).

REFERENCES

[1] “Cadence VCAD,” https://www.cadence.com/content/cadence-www/
global/en_US/home/services/vcad-services.html.

[2] “DARPA Circuit Realization at Faster Timescales (CRAFT) program,”
https://www.darpa.mil/program/circuit-realization-at-faster-timescales.

[3] A. Brinckman er al., “Collaborative circuit designs using the craft
repository,” Future Generation Computer Systems, vol. 94, pp. 841-853,
2019.

[4] “Ericom,” https://www.ericom.com,

[5S] “AWS GovCloud,” https://aws.amazon.com/govcloud-us|


https://www.cadence.com/content/cadence-www/global/en_US/home/services/vcad-services.html
https://www.cadence.com/content/cadence-www/global/en_US/home/services/vcad-services.html
https://www.darpa.mil/program/circuit-realization-at-faster-timescales
https://www.ericom.com
https://aws.amazon.com/govcloud-us

11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

[6] M. Swan, Blockchain: Blueprint for a new economy. ~ O’Reilly Media,
Inc.”, 2015.
[71 G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, pp. 1-32, 2014.
[8] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.
[9] “MongoDB,” https://www.mongodb.com.
[10] “Swagger OpenAPI Specification,” https://swagger.io/specification.
[11] “Express.js,” https://expressjs.com,


https://www.mongodb.com
https://swagger.io/specification
https://expressjs.com

	Introduction
	Requirements
	System Architecture
	System Design
	Blockchain
	ASIC Design Flows
	Collaborative Workflow Tracking

	Implementation
	Blockchain Implementation 
	Design Flows
	Collaborator Workflow Tracking

	Conclusion
	References

