
Assessing Resource Provisioning and Allocation of Ensembles of
In Situ Workflows

Tu Mai Anh Do

Information Sciences Institute

University of Southern California

Marina Del Rey, CA, USA

tudo@isi.edu

Loïc Pottier

Information Sciences Institute

University of Southern California

Marina Del Rey, CA, USA

lpottier@isi.edu

Rafael Ferreira da Silva

Information Sciences Institute

University of Southern California

Marina Del Rey, CA, USA

rafsilva@isi.edu

Silvina Caíno-Lores

University of Tennessee at Knoxville

Knoxville, TN, USA

scainolo@utk.edu

Michela Taufer

University of Tennessee at Knoxville

Knoxville, TN, USA

mtaufer@utk.edu

Ewa Deelman

Information Sciences Institute

University of Southern California

Marina Del Rey, CA, USA

deelman@isi.edu

ABSTRACT
Scientific breakthroughs in biomolecular methods and improve-

ments in hardware technology have shifted from a single long-

running simulation to a large set of shorter simulations running

simultaneously, called an ensemble. In an ensemble, each indepen-

dent simulation is usually coupled with several analyses that apply

identical or distinct algorithms on data produced by the correspond-

ing simulation. Today, in situ methods are used to analyze large

volumes of data generated by scientific simulations at runtime.

This work studies the execution of ensemble-based simulations

paired with in situ analyses using in-memory staging methods. Be-

cause simulations and analyses forming an ensemble typically run

concurrently, deploying an ensemble requires efficient co-location-

aware strategies, making sure the data flow between simulations

and analyses that form an in situ workflow is efficient. Using an

ensemble of molecular dynamics in situ workflows with multiple

simulations and analyses, we first show that collecting traditional

metrics such as makespan, instructions per cycle, memory usage,

or cache miss ratio is not sufficient to characterize the complex

behaviors of ensembles. Thus, we propose a method to evaluate

the performance of ensembles of workflows that captures resource

usage (efficiency), resource allocation, and component placement.

Experimental results demonstrate that our proposed method can

effectively capture the performance of different component place-

ments in an ensemble. By evaluating different co-location scenarios,

our performance indicator demonstrates improvements of up to

four orders of magnitude when co-locating simulation and coupled

analyses within a single computational host.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPP Workshops ’21, August 9–12, 2021, Lemont, IL, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8441-4/21/08. . . $15.00

https://doi.org/10.1145/3458744.3474051

KEYWORDS
Scientific workflow, Ensemble workflow, In situ model, Molecular

dynamics, High-performance computing

ACM Reference Format:
Tu Mai Anh Do, Loïc Pottier, Rafael Ferreira da Silva, Silvina Caíno-Lores,

Michela Taufer, and Ewa Deelman. 2021. Assessing Resource Provisioning

and Allocation of Ensembles of In Situ Workflows. In 50th International
Conference on Parallel Processing Workshop (ICPP Workshops ’21), August
9–12, 2021, Lemont, IL, USA. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3458744.3474051

1 INTRODUCTION
Organizing computations into ensembles is gaining popularity in

many scientific domains using computational simulations. Ensem-

bles of workflows are composed of several inter-related workflows.

These workflows typically have a similar structure, but they differ

in their input data, number of tasks, and individual task sizes [18].

Workflow ensembles are often used in molecular dynamics (MD)

simulations, which compute the atomic states of a molecular system

evolving over time by observing microscopic interactions between

atoms. Studying the folding process of complex molecules (i.e.,

conformational transition) of a molecular system often requires

running large-scale simulations to thoroughly explore feasible solu-

tions in the configuration space. Such simulations require consider-

able computing time and resources, which may grow exponentially

with the size of the system. Such simulations are often run on high-

performance computing (HPC) systems in parallel [9]. Ensemble-

based simulation approaches (in which multiple simulations are run

concurrently) may also potentially lead to more efficient sampling

of the solution space. For instance, multiple-walker [11, 24] em-

ploys multiple replicas of the system, known as walkers, where each

walker simultaneously explores the same free energy landscape

to improve sampling performance. Generalized ensembles [10, 22]

allow sampling a broader configuration space by partitioning sim-

ulation states into ensembles with optimal weights to perform a

random walk in potential energy spaces. The key challenge for

enabling these approaches on large-scale systems is to efficiently

execute these concurrent simulations structured as an entity, an

ensemble.

https://doi.org/10.1145/3458744.3474051
https://doi.org/10.1145/3458744.3474051
https://doi.org/10.1145/3458744.3474051

ICPP Workshops ’21, August 9–12, 2021, Lemont, IL, USA Do et al.

Traditionally, MD simulations and the follow on data analysis

are loosely coupled, where the analysis is started after the simula-

tion is completed. The coupling of the two components is typically

done via the file system. However, because of the growing disparity

between storage and computing capabilities in current leadership

computers [27], post-processing of potentially large volume of sim-

ulation data results in I/O bottlenecks [17]. In situ processing has

emerged as an alternative paradigm to overcome such I/O limita-

tion. Rather than post-processing data upon simulation completion,

in situ methods allow scientists to process data during the runtime

of the simulation by leveraging in-memory staging solutions such

as DIMES [30], or fast local storage such as burst buffers [14] and

doing the analysis in an iterative manner. MD simulations, like

many scientific simulations from diverse scientific domains, exhibit

an iterative pattern that can benefit from the in situ paradigm, i.e.

data generation and analysis can occur in concert. In this paper, the

simulations are coupled with analyses by staging data in memory

for in situ processing.

To denote a collection of workflows, two terms co-exist in the

literature: workflow ensemble [8, 15] and ensemble workflow [3, 23].

Although these terms are used interchangeably, we only refer

to workflow ensemble in this work. When running ensembles of

in situ workflows, there is a tension between co-locating simula-

tions, corresponding analyses on the same resources, so that the

data flowing between them can be efficiently communicated, and

leveraging separate resources for these components to reduce the

computation time of each (as running multiple components on

the same resource usually leads to performance degradation due

to interference [21]). In this paper, we have developed methods

to characterize the execution of the workflow ensemble and to

decide how the workflow components need to be place within a

system to optimize the overall workflow ensemble performance.

We introduce a set of performance metrics that qualify and quantify

the contention between components sharing the same computing

allocation and the benefits of the co-location.

Commonly, an ensemble-based simulation is comprised of a

large number of components. Solely observing individual compo-

nents separately is not sufficient to characterize the execution of

a workflow ensemble, which features concurrently running exe-

cutables that utilize in situ communication techniques. The hetero-

geneous behaviors of coupled tasks, i.e. simulations are normally

compute-intensive while analyses are data-intensive, exacerbate

the management to accommodate efficient execution and make

performance characterization of workflow ensembles challenging.

Managing the execution of workflow ensembles leads to schedul-

ing challenges at multiple levels within the workflow ensemble,

among both concurrent and coupled applications. In this work,

we aim to design a method that will allow scientists to make ef-

ficient scheduling decisions for a workflow ensemble of coupled

simulations and in situ analyses. In particular, we formalize the

behavior of workflow ensembles into a theoretical framework and,

then based on this framework we propose a method to evaluate

resource usage, resource allocation, and resource provisioning for

workflow ensembles. Our contributions are as follows:

(1) We introduce a set of comprehensive metrics that can charac-

terize the overall workflow ensembles behavior at different

levels of the application (task, workflow, and ensemble). Ex-

perimental analysis using a real-world MD in situ workflows

demonstrates the usefulness of the approach.

(2) We propose a formal executionmodel to captureworkflow en-

semble execution, which is then used to compute the effi-

ciency of coupled components. This formal framework lays

out the foundation for a novel performance indicator, which

allows us to assess the expected efficiency of a given config-

uration of a workflow ensemble.

(3) We validate our proposed metrics using a realistic MD use

case executing on a leadership class system. Experimental re-

sults demonstrate that our methods can capture co-location

scenarios in which improvements up to four orders of mag-

nitude can be achieved.

2 WORKFLOW ENSEMBLE
In this section, we conduct several experiments using a realistic

use case of molecular dynamics ensembles executing on a large-

scale HPC platforms. We characterize the behavior of the ensemble

use case using traditional metrics and discuss their limitations.

The analysis of the obtained results demonstrates the need for

new metrics that can accurately capture performance behaviors of

ensemble-based computations. Based on these results, we developed

new metrics that can better capture ensemble behavior.

2.1 Definitions
A workflow ensemble is a collection of inter-related ensemble mem-
bers/workflows executing in parallel. Each ensemble member may

be comprised of multiple ensemble components – a component can

be a simulation or an analysis as is the case in our MD example

(Figure 1). Note that even though a workflow ensemble can be com-

prised of parallel and sequential workflows, we can always group

workflows (ensemble members) running in parallel into a workflow

ensemble. We focus on the set of ensemble members running con-

currently and starting their executions at the same time, to mimic

how multiple MD simulations are executed simultaneously in en-

semble methods [10, 11, 22, 24]. In this work, we restrict ourselves

to a single simulation per ensemble member. This simulation is

coupled with at least one analysis component. In this work, we as-

sume that ensemble members do not exchange information and are

independent of each other (i.e., the analysis component of a given

ensemble member only requires data generated by the simulation

of that ensemble member [5]). The type of coupling is defined by

the ensemble components. In our MD application, the simulation

periodically writes out the data, which is read synchronously by the

analyses. Although the simulation can compute while the analyses

are reading the data, the simulation does not write any new data

until the data from the previous iteration is read.

2.2 Experimental Setup
In situ processing, combinedwith in-memory computing, has emerged

as a solution to overcome I/O bottlenecks in large-scale systems,

because moving data in memory rather than via the file system

provides much better performance. However, using in situ process-

ing, often implies that the communicating components need to

share a node on an HPC system (in case of a distributed memory

Assessing Resource Provisioning and Allocation of Ensembles of In Situ Workflows ICPP Workshops ’21, August 9–12, 2021, Lemont, IL, USA

6LPXODWLRQ��
$QDO\VLV��

6LPXODWLRQ��

6LPXODWLRQ�� $QDO\VLV��

,WHUDWLYH�SURFHVV

$QDO\VLV��

(QVHPEOH�
PHPEHU��

:RUNIORZ�
HQVHPEOH

(QVHPEOH�FRPSRQHQWV 'DWD�VWDJLQJ

(QVHPEOH�
PHPEHU��

(QVHPEOH�
PHPEHU��

Figure 1: Ensemble of in situ workflows: Ensemble Compo-
nent, Ensemble Member, and Workflow Ensemble.

architecture). However, this co-location can also lead to resource

contention and reduce the benefit of in situ communications. In

the context of workflow ensembles, a large number of components

sharing resources may exacerbate resource contention. To measure

the impact of resource contention, we monitor a set of traditional

metrics (see Table 1) that are classified into three levels of granular-

ity: (i) ensemble component, (ii) ensemble member/workflow, and

(iii) workflow ensemble.

Metric Description

Ensemble Component

Execution time Time spent in one component (e.g., simulation or analyses)

LLC miss ratio Number of LLC misses / Number of LLC references

Memory intensity Number of LLC misses / Number of instructions

Instructions per cycle Number of instructions / Number of cycles

Ensemble Member

Member makespan Timespan between simulation start time and the latest analysis end time

Workflow Ensemble

Ensemble makespan Maximum makespan among all ensemble members in the workflow

Table 1: Set of metrics. (LLC stands for Last-level cache.)

At the ensemble component level, cache miss ratio and mem-

ory intensity [12] indicate the degree of resource contention; in-

structions per cycle shows the raw performance of the ensemble

component. At the ensemble member level, we calculate the turn-

around time (makespan) of each member, by taking the difference

between the end time of the latest analysis and the start time of the

simulation. The ensemble makespan is defined as the maximum

makespan of all ensemble members. (Recall that all members run

concurrently and all simulations start simultaneously.)

Application. In this experiment, an ensemble member is comprised

of a MD simulation coupled with analysis kernels using in situ

processing. Specifically, the simulation simulates a medium-scale

all-atom system containing the GltPh transporter protein [4]. Molec-

ular interactions are implemented in GROMACS [7], with standard

simulation settings at a time-step of 2 femtoseconds. The simula-

tion periodically sends in-memory generated frames, i.e. atomic

positions, to the analyses coupled with it. In our application, the

analysis computes the largest eigenvalue of bipartite matrices [16]

as a collective variable [6] of the frames. This captures molecular

motions of the system. The frequency at which data is sent for

analysis is determined by the stride, which represents the number

of simulation steps computed before a frame is generated.

Workflow ensemble runtime. For our experiments, we developed

a runtime system (Figure 2) that manages the execution of work-

flow ensembles on a target HPC platform. This runtime includes

two main components: (i) a data transport layer (DTL), and (ii) a

DTL plugin. The former represents a variety of storage tiers, in-

cluding in-memory [30], burst-buffers [14], or parallel file systems.

In this paper, we target in-memory DTL. The latter acts as a middle

layer between the ensemble components (simulations/analyses)

and the underlying DTL and is responsible for data handling. The

simulation using the DTL plugin to write out data abstracted into a

chunk, which is the base data representation manipulated within

the entire runtime. This abstraction allows the system to be adapt-

able to a variety of simulations and eases the burden of developing

special-purpose code to pair with diverse simulation types. The

chunk also defines a unique data type standard for the analysis

kernels, though each of them may perform different computations.

The DTL plugin does data marshaling to support various DTL im-

plementations. Specifically, the abstract chunk is serialized to a

buffer of bytes, which is easy to manage for most DTL. The DTL

plugin interfaces also hide the complexities of managing different

I/O staging protocols in the DTL.

6LPXODWLRQ

'7/�SOXJLQ

,Q�PHPRU\�6WDJLQJ�$UHD��'7/�

'7/�SOXJLQ

0HPRU\�
�'5$0�

0HPRU\�
�'5$0�

'DWD�FKXQN�DEVWUDFWLRQ

(QVHPEOH�
FRPSRQHQW��

:RUNIORZ�(QVHPEOH�5XQWLPH

(QVHPEOH�
FRPSRQHQW��

$QDO\VLV

Figure 2: Architectural overview of the proposed runtime
system for managing workflow ensemble executions. The
Data Transport Layer (DTL) represents in-memory staging
area, and the DTL plugins provide the interface between the
ensemble components and the underlying DTL.

To optimize the in situ data processing, coupled components

in an ensemble member are synchronized as they progress con-

currently over time. For example, in an ensemble of simulations,

analysis steps can only execute upon completion of the current

simulation step.

Experimental platform. Our execution platform is Cori [1], a

Cray XC40 supercomputer located at the National Energy Research

Scientific Computing Center (NERSC). Each compute node is equipped

with two Intel Xeon E5-2698 v3 (16 cores each) sharing 128 GB of

DRAM and are connected through a Cray Aries dragonfly topology.

To test the impact of co-locating the analyses and the simulation,

we set the simulation to a predefined stride and choose the settings

for the analysis that satisfy two conditions: (i) a simulation step

takes longer than an analysis step so that the analysis does not

ICPP Workshops ’21, August 9–12, 2021, Lemont, IL, USA Do et al.

slow down the simulation; (ii) the idle time in the analysis (waiting

for simulations’ chunks) is minimized, so that we maximize the

time that the analyses and simulations are running at the same

time. Section 3.4 provides more details about the approach. For

our experiments, the two constraints are satisfied by the following

resource allocations: every simulation runs on 16 physical cores of

a computing node with a stride equal to 800 and 30, 000 simulation

steps and each analysis uses 8 physical cores.

We leverage DIMES [30] to deploy the in-memory staging area

for the DTL. DIMES is an in situ implementation in which data is

kept locally in the node memory on which the simulation is run-

ning and distributed over network to nodes upon request. We use

TAU [25] to collect runtimes, performance counters, and memory

footprints. Measurements are averaged over 5 trials.

Workflow configurations. In this work, we experiment with an

workflow ensembles with different configurations (e.g., number of

ensemble members, component placements) to study co-location be-

haviors. Table 2 shows the 7 configurations used in our experiments.

These configurations include the number of ensemble members,

number of computing nodes allocated for the entire workflow en-

semble , and node indexes in the allocation on which each ensemble

component is running. Every ensemble member is comprised of

one simulation coupled with one analysis. 𝐶𝑓 and 𝐶𝑐 are two ele-

mentary configurations in which each configuration has a single

ensemble member. 𝐶𝑓 describes a co-location-free placement, i.e.

the simulation and the analysis are located on two separate nodes.

𝐶𝑐 co-locates the simulation and the analysis on a single compute

node. The configurations for 2 ensemble members explore a number

of co-location scenarios of ensemble components. In 𝐶1.1, the two

analyses run on the same node and each simulation on a dedicated

node; in 𝐶1.2, both simulations share a node and analyses run on

dedicated nodes. In 𝐶1.3, the simulation and the analysis of the

first ensemble member share the same node, while the other en-

semble member has the simulation and the analysis running on

two different nodes. In 𝐶1.4, the two simulations share a node and

the two analyses share another node. Finally, 𝐶1.5 represents the

setup where each simulation shares a node with its corresponding

analysis.

Config-

uration

Number of

computing

nodes

Number of

ensemble

members

Node indexes

Ensemble member 1 Ensemble member 2

Simulation 1 Analysis 1 Simulation 2 Analysis 2

𝐶𝑓 2 1 𝑛0 𝑛1 - -

𝐶𝑐 1 1 𝑛0 𝑛0 - -

C1.1 3 2 𝑛0 𝑛2 𝑛1 𝑛2
C1.2 3 2 𝑛0 𝑛1 𝑛0 𝑛2
C1.3 3 2 𝑛0 𝑛0 𝑛1 𝑛2
C1.4 2 2 𝑛0 𝑛1 𝑛0 𝑛1
C1.5 2 2 𝑛0 𝑛0 𝑛1 𝑛1

Table 2: Experimental scenarios configuration settings.

2.3 Analyzing workflow ensemble co-location
Figures 3 to 5 show measurements obtained with the set of tradi-

tional metrics (Table 1) for the various configuration settings (Ta-

ble 2). Higher LLC miss ratios in Figure 3 (compared to co-location-

free configuration 𝐶𝑓) capture the cache misses in 𝐶𝑐 , and 𝐶1.1 to

𝐶1.5 due to resource contention from the co-located ensemble com-

ponents. In our application, analyses are more memory-intensive

than the simulations, thus co-locations of the analyses, i.e. 𝐶1.1

Cf Cc C1.1 C1.2 C1.3 C1.4 C1.5

1400

1600

1800

E
xe

cu
ti

on
ti

m
e

[s
]

Simulations

Simulation 1

Simulation 2

Cf Cc C1.1 C1.2 C1.3 C1.4 C1.5

1400

1600

Analyses

Analysis 1

Analysis 2

Cf Cc C1.1 C1.2 C1.3 C1.4 C1.5
6

8

10

12

L
L

C
m

is
s

ra
ti

o
[%

]

Simulations

Simulation 1

Simulation 2

Cf Cc C1.1 C1.2 C1.3 C1.4 C1.5
36

38

40

42
Analyses

Analysis 1

Analysis 2

Cf Cc C1.1 C1.2 C1.3 C1.4 C1.5
0.00008

0.00010

0.00012

0.00014

0.00016

M
em

or
y

in
te

ns
it

y

Simulations

Simulation 1

Simulation 2

Cf Cc C1.1 C1.2 C1.3 C1.4 C1.5
0.0014

0.0016

0.0018

0.0020
Analyses

Analysis 1

Analysis 2

Cf Cc C1.1 C1.2 C1.3 C1.4 C1.5
Configurations

1.6

1.8

2.0

In
st

ru
ct

io
ns

p
er

cy
cl

e

Simulations

Simulation 1

Simulation 2

Cf Cc C1.1 C1.2 C1.3 C1.4 C1.5
Configurations

1.6

1.8

2.0
Analyses

Analysis 1

Analysis 2

Figure 3: Metrics at ensemble component level.

Cf Cc C1.1 C1.2 C1.3 C1.4 C1.5
Configurations

1300

1400

1500

1600

1700

M
em

b
er

m
ak

es
pa

n
[s

]

Ensemble Member 1

Ensemble Member 2

Figure 4: Ensemble member
makespan.

C1.1 C1.2 C1.3 C1.4 C1.5
Configurations

1500

1600

E
ns

em
bl

e
m

ak
es

pa
n

[s
]

Figure 5: Workflow ensemble
makespan.

and 𝐶1.4, result in higher cache misses than the co-location of the

simulations, i.e. 𝐶1.2. The co-location of heterogeneous tasks (the

simulation and the analysis) lead to higher miss rates in 𝐶1.3 and

𝐶1.5 compared to 𝐶1.1, 𝐶1.2, and 𝐶1.4. That said, 𝐶1.5 yields the

shortest member makespan among all configurations (Figures 4

and 5). We argue that co-locating coupled components within an

ensemble member leads to execution efficiency despite the elevated

degree of LLC interference. However, only simulation and analyses

that exchange data should be co-located.

The overall conclusion is that evaluating each set of metrics

exclusively does not guarantee a thorough understanding of the

workflow ensemble performance. Metrics at the component level

yield insights into the characteristics of individual components, but

fail to capture the overall workflow ensemble behavior. For example,

in our case, analyses are more memory-intensive than simulations,

which leads to increased cache miss ratio or higher memory inter-

ference. As a result, resource contention may arise due to co-located

analyses, thereby not only leading to increased execution time of

these components, but also increased ensemble member makespan

(recall the simulation and analyses execute synchronously). Conse-

quently, the overall workflow ensemble makespan may be harmed

Assessing Resource Provisioning and Allocation of Ensembles of In Situ Workflows ICPP Workshops ’21, August 9–12, 2021, Lemont, IL, USA

due to slow ensemble members. Therefore, in order to identify strag-

glers among the members one would need to diligently inspect and

relate the independent measurements to draw conclusions of the

workflow ensemble performance. We argue then that there is a

need to develop a method that captures the performance within a

workflow ensemble at multiple levels of granularity. To this end, in

the next section, we present an efficiency metric that indicates effec-

tive computation during the execution of an ensemble member. We

then consolidate measurements collected at the ensemble member

level into an indicator of overall workflow ensemble efficiency.

3 EFFICIENCY MODEL
To assess the performance of the workflow ensembles, we first

address the demand of execution characterization at the level of

ensemble members. In this section, we present an in situ execu-

tion model for a single ensemble member. Based on this model, we

propose an indicator to estimate the computational efficiency for

an ensemble member. We expanded the single simulation/single

analysis model presented in [13] to include multiple analysis com-

ponents coupled to a single simulation (Figure 1). We leverage this

efficiency indicator as one of the prerequisites to synthesize the

performance of workflow ensembles in Section 4.

3.1 Application Model
In our model, every simulation step is divided into three fine-

grained stages: a simulation stage 𝑆 , an idle stage 𝐼𝑆 , and a writing

stage𝑊 in order, i.e. 𝑆 occurs before 𝐼𝑆 , 𝐼𝑆 happens before𝑊 . The

simulation performs the computation during 𝑆 , waits for the time

when data are ready to stage in 𝐼𝑆 , and then sends data to the

analysis during𝑊 . Similarly, every analysis step is comprised of:

a reading stage 𝑅, an analyzing stage 𝐴, and an idle stage 𝐼𝐴 , exe-

cuted in that order. The analysis reads data sent by the simulation

in 𝑅, performs certain analyses during 𝐴, and then waits until the

next chunk of data is available for processing during 𝐼𝐴 . These

fine-grained stages can be organized into three sub-groups: compu-

tational stages (𝑆,𝐴), I/O stages (𝑊,𝑅), and idle stages (𝐼𝑆 , 𝐼𝐴).

The synchronous communication pattern discussed in Section 2

enforces the coordination among I/O stages such that𝑊𝑖 of step 𝑖

occurs before 𝑅𝑖 , and 𝑅𝑖 happens before𝑊𝑖+1 of the next iteration
(Figure 6) so that the simulation does not overwrite data, which

have not been read yet (i.e., we assume no buffering of the sim-

ulation output in this work, in conformity with [13]). Thanks to

the iterative relationship between simulations and analyses, their

executions, after a few warm-up steps, reach a steady-state where

each stage has a similar execution time as measure over many steps.

As a result, rather than considering a particular step 𝑖 for a given

stage (e.g.,𝑊𝑖), we use a star symbol to denote steady-state stages.

Then, 𝑆∗, 𝐼𝑆∗ ,𝑊∗, 𝑅∗, 𝐴∗, and 𝐼𝐴∗ denote the steady-state stages of

𝑆, 𝐼𝑆 ,𝑊 , 𝑅,𝐴, and 𝐼𝐴 respectively.

3.2 In Situ Step
A given ensemble member is composed of a single simulation 𝑆𝑖𝑚

coupled with 𝐾 analyses 𝐴𝑛𝑎1, 𝐴𝑛𝑎2, . . . , 𝐴𝑛𝑎𝐾 . An in situ step is

defined as the duration between the beginning of the stage 𝑆 in the

simulation and the end of the stage 𝐼𝐴 that finishes last among the

𝐾 analyses. We characterize the execution of a coupled simulation-

analysis into two scenarios (Figure 6): (i) Idle Simulation – a given

analysis step runs longer than the corresponding simulation step;

(ii) Idle Analyzer – a given analysis step runs faster than the associ-

ated simulation step. In Idle Simulation, the simulation step waits

for the completion of the analysis step. In contrast, in Idle Analyzer

the analysis step waits for data available from the corresponding

simulation step. For example, in Figure 6, the coupling of the sim-

ulation and the analysis 1 falls into the Idle Simulation scenario,

while the simulation and the analysis 2 are paired under the Idle

Analyzer scenario.

An ensemble member with one simulation and 𝐾 analyses has

𝐾 different couplings {(𝑆𝑖𝑚,𝐴𝑛𝑎1), . . . , (𝑆𝑖𝑚,𝐴𝑛𝑎𝐾)} shortened in

this work as (𝑆𝑖𝑚,𝐴𝑛𝑎𝑖) with 1 ≤ 𝑖 ≤ 𝐾 . (Each of these couplings

can be categorized as either Idle Simulation or Idle Analyzer scenar-

ios.) Note that multiple in situ steps may overlap due to concurrent

executions. Thus, computing the makespan of an ensemble member

should also account for this behavior – by simply expressing the

makespan as the aggregation of in situ steps durations, its value is

likely to be overestimated. As a result, we define an “actual" in situ

step as the non-overlapped segment 𝜎∗ (Figure 6).
Intuitively, the non-overlapped segment 𝜎∗ of a given in situ

step is the section between two consecutive simulation stages 𝑆

(recall an in situ step starts with the stage 𝑆). There are two possible

scenarios: (i) the simulation and the write stage run longer (Idle

Analyzer scenario), then the non-overlapped segment is equals to

𝑆∗ +𝑊∗; or (ii) one of the 𝐾 analysis, 𝐴𝑛𝑎𝑖 , has the longest runtime

(Idle Simulation scenario) then, the non-overlapped step is equals

to 𝑅𝑖∗ +𝐴𝑖∗. Hence,

𝜎∗ = max(𝑆∗ +𝑊∗, 𝑅1∗ +𝐴1

∗, . . . , 𝑅
𝐾
∗ +𝐴𝐾∗). (1)

Given the non-overlapped segment of in situ steps, we compute

the execution time of one ensemble member (also known as the

makespan) as:

Makespan = 𝑛𝑠𝑡𝑒𝑝𝑠 × 𝜎∗ , (2)

where 𝑛𝑠𝑡𝑒𝑝𝑠 is the total number of in situ steps.

3.3 Computational Efficiency
To characterize the execution of an ensemble member, in this sec-

tion, we propose an indicator to capture the efficiency of the exe-

cution of an ensemble member from a computational standpoint,

where we want to minimize the idle time, and as a result increase re-

source usage. To compute the idle time per in situ step, we use Equa-

tion (1) to derive the duration of the idle stage on the simulation

component: 𝐼𝑆∗ = 𝜎∗−(𝑆∗+𝑊∗) and, the duration of the idle stage for
the analysis 𝑖 as 𝐼

𝐴𝑖
∗ = 𝜎∗−(𝐴𝑖∗+𝑅𝑖∗). For each coupling (𝑆𝑖𝑚,𝐴𝑛𝑎𝑖),

the portion of effective computation, i.e. not sitting idle, of an actual

in situ step is defined as 𝜎∗ − (𝐼𝑆∗ + 𝐼𝐴𝑖
∗). Since the computational

efficiency of an ensemble member depends on the amount of time

the ensemble components are idle, we compute a computational

efficiency 𝐸 to be the average time of effective computation over

the actual in situ step of 𝐾 couplings in the ensemble member:

𝐸 =
1

𝐾

𝐾∑
𝑖=1

(
1 − 𝐼𝑆∗ + 𝐼𝐴𝑖

∗
𝜎∗

)
=
𝑆∗ +𝑊∗
𝜎∗

+
∑𝐾
𝑖=1𝐴

𝑖
∗ + 𝑅𝑖∗

𝐾 𝜎∗
− 1. (3)

ICPP Workshops ’21, August 9–12, 2021, Lemont, IL, USA Do et al.

5�5� $�

:�

LQ�VLWX�VWHS

LQ�VLWX�VWHS

6�:� 6�

5�

:�

$� 5�

6�

$�

6� :� 6�

5� $�

:�

5� $� 5� $� 5� $� 5� $� 5� $�

QRQ�RYHUODSSHG

,GOH�6LPXODWLRQ ,GOH�$QDO\]HU ,GOH�VWDJHV ,�2�VWDJHV &RPSXWDWLRQ�VWDJHV

6LPXODWLRQ

$QDO\VLV��

$QDO\VLV��

,6

,$
$�

6� :�

$�5�

6�

,Q�VLWX�VWHS

Figure 6: Example of fine-grained execution steps for a member of one ensemble. (Idle simulation and analyzer represent
coupled simulation-analysis scenarios.)

Since this indicator is derived from 𝜎∗, which is used to estimate

the makespan, maximizing 𝐸 implies minimizing the idle time and

thereby the makespan.

3.4 Discussion
In this section, we use our efficiency model to substantiate the

choice of settings (i.e, number of cores and stride) used to run

the experiments shown in Section 2.2. Recall that for that set of

experiments, we consider a MD simulation coupled with an in situ

analysis. The parameter space is intractable as we can vary the

number of cores per component, their respective placements, and

the stride of the simulation. Thus, an exhaustive search is out of

reach. However, we can define a heuristic that finds parameters that

minimize the makespan and maximize the computational efficiency

of an ensemble member. In this context, we make the following

assumptions:

• The simulation settings are considered as an input of the

problem and are provided by the user. In most cases sci-

entists have a rough estimate of the best settings for their

simulations, but not for the analyses.

• Although our theoretical framework supports coupling to

different types of analyses simultaneously, we limit our ex-

periments to only identical analyses – thus narrowing the

configuration space.

We first consider the scenario without co-location, and we argue

that settings provisioned to the simulation and the analysis within

that context act as a baseline when contrasting to other co-location

scenarios. Based on our first assumption, we arbitrarily set the

settings of a simulation as follows: 16 cores and a stride of 800

(recall that our execution platform has compute nodes embedding

32 cores).We then vary the number of cores allocated to the analyses

to determine for which number of cores the makespan is minimized

and the computational efficiency 𝐸 is maximized.

We notice that minimizing the makespan is equivalent to mini-

mizing 𝜎∗ (Equation (2)). Thus, given an ensemble member with a

certain simulation with a predefined configuration coupled with

in situ analyses, in order to minimize the makespan, we need to

assign a number of cores the to the analyses such that:

𝑅𝑖∗ +𝐴𝑖∗ ≤ 𝑆∗ +𝑊∗,∀𝑖 ∈ {1, 2, . . . , 𝐾}. (4)

This inequality implies that each of the𝐾 coupling (𝑆𝑖𝑚,𝐴𝑛𝑎𝑖) falls
into the Idle Analyzer scenario, then from Equation (1) we obtain

𝜎∗ = 𝑆∗ +𝑊∗. Figure 7 shows the impact, when the number of

cores assigned to the analysis ranges from 1 to 32, on the in situ

step 𝜎∗, the simulation component 𝑆∗ +𝑊∗, the analysis compo-

nent 𝑅∗ +𝐴∗, and the computational efficiency 𝐸. The analysis step

when using 1 to 4 cores takes longer than the simulation step, i.e.

𝑅∗ +𝐴∗ > 𝑆∗ +𝑊∗, thus 𝜎∗ = 𝑅∗ +𝐴∗. The inequality in Equation (4)

is satisfied once the analysis uses between 8 and 32 cores, which

minimizes 𝜎∗, thereby minimizing the member makespan. Among

executions whose makespan is minimized, we optimize the compu-

tation efficiency by selecting the configuration that leads to𝑚𝑎𝑥 (𝐸).
Hence, we decide to assign 8 cores to each analysis, which results

in the highest computational efficiency, i.e. the smallest amount of

idle time.

1 2 4 8 16 32
Number of cores assigned to an analysis

100

200

300

400

T
im

e
(s

)

σ∗
S∗ + W∗
R∗ + A∗

E

20

40

60

80

100

C
om

pu
ta

ti
on

al
E

ffi
ci

en
cy
E

(%
)

Figure 7: Execution time of the in situ step and computa-
tional efficiency when varying the number of cores assigned
to an analysis with a fixed simulation setting.

4 PERFORMANCE INDICATORS
In this section, we leverage the efficiency indicator described above

to evaluate the performance of workflow ensembles. We extend

the notion of efficiency from the individual member to the work-

flow ensemble level. (Note that different ensemble members can

have different efficiency values.) To synthesize the performance of

workflow ensembles, we introduce a three-stage approach in which

each stage adds a new layer of information to further refine the

indicator with desired features such as resource usage, resource

provisioning, and resource allocation. The goal of this multi-stage

approach is to provide a methodology to assess the impact of each

layer of information and come up with an overall performance

indicator that can characterize the performance of the entire work-

flow ensemble. Below, we define a set of notations (Table 3) used to

define the indicator.

Assessing Resource Provisioning and Allocation of Ensembles of In Situ Workflows ICPP Workshops ’21, August 9–12, 2021, Lemont, IL, USA

4.1 Notations
Given aworkflow ensemblewith𝑁 ensemblemembers {𝐸𝑀1, . . . , 𝐸𝑀𝑁 },
let 𝑃𝑖 be the performance indicator of the ensemble member 𝐸𝑀𝑖 ,

and 𝐸𝑖 be its computational efficiency. The ensemble member 𝐸𝑀𝑖

contains a simulation 𝑆𝑖𝑚𝑖 coupledwith𝐾𝑖 analyses,𝐴𝑛𝑎
1

𝑖
, . . . , 𝐴𝑛𝑎

𝐾𝑖

𝑖
,

thus 𝐸𝑀𝑖 has 𝐾𝑖 couplings (𝑆𝑖𝑚𝑖 , 𝐴𝑛𝑎 𝑗𝑖), where 𝑗 ∈ {1, . . . , 𝐾𝑖 }. Let
𝑐𝑠𝑖 be the number of cores used by 𝑆𝑖𝑚𝑖 , these cores belong to nodes

whose indexes are listed in set 𝑠𝑖 . Similarly, the analysis 𝐴𝑛𝑎
𝑗
𝑖
uses

𝑐𝑎
𝑗
𝑖
cores of nodes whose indexes are defined in set 𝑎

𝑗
𝑖
. For example,

in Table 2, C1.1 has 𝑠1 = {0}, 𝑎1
1
= {2}, 𝑠2 = {1}, 𝑎1

2
= {2}. Let 𝑐𝑖

denote the total number of cores assigned to all ensemble compo-

nents, i.e. simulation 𝑆𝑖𝑚𝑖 and 𝐾𝑖 analyses 𝐴𝑛𝑎
𝑗
𝑖
, in a given ensem-

ble member 𝐸𝑀𝑖 . We have 𝑐𝑖 = 𝑐𝑠𝑖 +
∑𝐾𝑖

𝑗=1
𝑐𝑎
𝑗
𝑖
. Let 𝑑𝑖 be the number

of computing nodes allocated to the ensemble member 𝐸𝑀𝑖 . Then,

the number of compute nodes 𝑑𝑖 allocated to the ensemble member

𝐸𝑀𝑖 is calculated by 𝑑𝑖 =

���𝑠𝑖 ∪ ⋃𝐾𝑖

𝑗=1
𝑎
𝑗
𝑖

���. If the simulation and some

analyses share compute nodes, we have 𝑑𝑖 ≤ |𝑠𝑖 | +
∑𝐾𝑖

𝑗=1
|𝑎 𝑗
𝑖
|. (Note

that this inequality becomes an equality if each component runs on

dedicated nodes.) Let𝑀 be the total number of computing nodes

used by the entire workflow of 𝑁 ensemble members. Similarly,

we have𝑀 ≤ ∑𝑁
𝑖=1 𝑑𝑖 . In the absence of resource sharing (i.e, each

ensemble member runs on dedicated nodes), we have𝑀 =
∑𝑁
𝑖=1 𝑑𝑖 .

Notation Description

Workflow Ensemble

𝑁 Number of ensemble members

𝑀 Number of nodes used by the workflow ensemble

Ensemble Member

𝐸𝑀𝑖 Ensemble member 𝑖

𝑃𝑖 Performance indicator of 𝐸𝑀𝑖

𝐾𝑖 Number of couplings in 𝐸𝑀𝑖

𝑐𝑖 Total number of cores used by components of 𝐸𝑀𝑖

𝑑𝑖 Number of nodes allocated to 𝐸𝑀𝑖

Ensemble Component

𝑆𝑖𝑚𝑖 Simulation of 𝐸𝑀𝑖 (one simulation per member)

𝐴𝑛𝑎
𝑗

𝑖
Analysis 𝑗 of 𝐸𝑀𝑖 (𝐾𝑖 analysis for each 𝐸𝑀𝑖)

𝑐𝑠𝑖 Number of cores used by 𝑆𝑖𝑚𝑖 of 𝐸𝑀𝑖

𝑐𝑎
𝑗

𝑖
Number of cores used by𝐴𝑛𝑎

𝑗

𝑖
from 𝐸𝑀𝑖

𝑠𝑖 Set of node indexes on which 𝑆𝑖𝑚𝑖 from 𝐸𝑀𝑖 is executed

𝑎
𝑗

𝑖
Set of node indexes on which𝐴𝑛𝑎

𝑗

𝑖
from 𝐸𝑀𝑖 is executed

Table 3: Notations.

4.2 Member Resource Usage (U)
Our goal is to build an indicator that can compare different execu-

tions of workflow ensembles using different numbers of resources

(e.g., number of cores). The first stage 𝑃U
𝑖
of the performance in-

dicator calculation models the efficiency of an ensemble member

in terms of resource usage. We define 𝑃U
𝑖
as the smallest unit of

efficiency in terms of single core usage. Precisely, 𝑃U
𝑖
computes the

ratio between the the computational efficiency 𝐸𝑖 of an ensemble

member 𝐸𝑀𝑖 and the total number of cores 𝑐𝑖 used by 𝐸𝑀𝑖 , then:

𝑃U𝑖 =
𝐸𝑖

𝑐𝑖
. (5)

Recall that maximizing 𝐸𝑖 is equivalent to minimizing the idle time

and the makespan (Section 3.3). High values of 𝑃U
𝑖
indicate that a

large portion of the execution is spent on computing (in contrast

to idling), thus the ensemble member makespan is reduced.

4.3 Member Resource Allocation (A)
Since an ensemble member can have concurrent execution of multi-

ple components, the component can be co-located on the same node

or distributed across nodes. Finding an optimal placement among

the numerous placement configurations is challenging. Therefore,

we propose the second stage 𝑃
U,A
𝑖

to quantify the benefit of a certain

placement.

Lets consider the coupling (𝑆𝑖𝑚𝑖 , 𝐴𝑛𝑎 𝑗𝑖) part of the ensemble

member 𝐸𝑀𝑖 , then 𝑆𝑖𝑚𝑖 is co-located with𝐴𝑛𝑎
𝑗
𝑖
if and only if |𝑠𝑖 | =

|𝑠𝑖 ∪ 𝑎 𝑗𝑖 |. Otherwise, if |𝑠𝑖 | < |𝑠𝑖 ∪ 𝑎 𝑗𝑖 |, then they are assigned to

different nodes. Based on this observation, we define a placement
indicator obtained from the ratio 0 <

|𝑠𝑖 |
|𝑠𝑖∪𝑎 𝑗𝑖 |

≤ 1 to represent

a placement of a workflow ensemble. Let 𝐶𝑃𝑖 be the placement

indicator for the ensemble member 𝐸𝑀𝑖 :

𝐶𝑃𝑖 =
1

𝐾𝑖
(|𝑠𝑖 |
|𝑠𝑖 ∪ 𝑎1𝑖 |

+ · · · + |𝑠𝑖 |
|𝑠𝑖 ∪ 𝑎𝐾𝑖

𝑖
|
) = |𝑠𝑖 |

𝐾𝑖

𝐾𝑖∑
𝑗=1

1

|𝑠𝑖 ∪ 𝑎 𝑗𝑖 |
. (6)

Intuitively,𝐶𝑃𝑖 describes the placement of 𝐸𝑀𝑖 . It decreaseswith the

number of computing nodes used for a given workflow ensemble.

𝐶𝑃𝑖 = 1 indicates that the 𝐸𝑀𝑖 components are all co-located,

and 𝐶𝑃𝑖 close to 0 indicates that more dedicated resources are

used and that the components of 𝐸𝑀𝑖 are distributed across them.

Maximizing the placement indicator for each ensemble member

results in prioritizing placements that minimize the number of

computing resources used by that ensemble member. As a result,

the placement indicator not only reflects placement characteristics

but also the number of resources used at the ensemble member

level.

To evaluate the efficiency of a placement (i.e., a mapping be-

tween ensemble members and available resources), we include the

proposed placement indicator in the next stage of the performance

indicator. Specifically, wemultiply the first stage of our performance

indicator by the corresponding placement indicator as follows:

𝑃
U,A
𝑖

= 𝑃U𝑖 ×𝐶𝑃𝑖 =
𝐸𝑖

𝑐𝑖

|𝑠𝑖 |
𝐾𝑖

𝐾𝑖∑
𝑗=1

1

|𝑠𝑖 ∪ 𝑎 𝑗𝑖 |
. (7)

Deriving from the discussed insight of the placement indicator, max-

imizing the performance indicator at this stage favors the resource

configuration that occupies a small number of compute nodes while

maximizing the effectiveness of the execution.

4.4 Ensemble Resource Provisioning (P)
Finally, by just considering the execution features at the level of

ensemble member might not be sufficient to capture the overall

performance of the entire workflow ensemble. To that end, we

extend the performance indicator with the number of resources

provisioned for the entire workflow ensemble, i.e. the number of

computing nodes the workflow ensemble resides on. When compar-

ing two executions using a different number of computing nodes,

the run using a smaller number of nodes should yield better effi-

ciency in two settings with the same performance. Therefore, to

obtain the last stage 𝑃
U,A,P
𝑖

, we weigh the performance indicator

by the total number of compute nodes 𝑀 so that the number of

ICPP Workshops ’21, August 9–12, 2021, Lemont, IL, USA Do et al.

resources provisioned for the entire workflow ensemble is consid-

ered:

𝑃
U,A,P
𝑖

=
𝑃
U,A
𝑖

𝑀
=

𝐸𝑖

𝑐𝑖𝑀

|𝑠𝑖 |
𝐾𝑖

𝐾𝑖∑
𝑗=1

1

|𝑠𝑖 ∪ 𝑎 𝑗𝑖 |
. (8)

5 EXPERIMENTAL EVALUATION
In this section, we evaluate the ability of the proposed perfor-

mance indicators to characterize the execution performance of

workflow ensembles. First, we propose a method for aggregating

indicator values from individual ensemble members into a global

indicator at the workflow ensemble level. Then, we extend our previ-

ous experimental configuration settings (Section 2.2) with scenarios

in which multiple analyses are coupled with the simulation.

5.1 Ensemble-level Performance Indicator
In order to compute a global indicator, we synthesize performance

indicators of every ensemble member. A simple approach would

be to consider the average values for all 𝑃𝑖 . However, the large

variation between these valuesmay lead to inaccurate assessment of

the overall performance. Tominimize the variability in performance

among ensemble members, we consider the mean performance 𝑃

from which we subtract the standard deviation:

𝐹 (𝑃𝑖) = 𝑃 −

√√√
1

𝑁

𝑁∑
𝑖=1

(𝑃𝑖 − 𝑃)2 where 𝑃 =
1

𝑁

𝑁∑
𝑖=1

𝑃𝑖 . (9)

The intuition behind Equation (9) is to favor workflow ensemble’s

configurations with good makespan, i.e. configurations with a low

variability between workflow ensemble members (recall that the

makespan of a workflow ensemble is defined as the maximum

completion time among its members). The goal of an efficient con-

figuration, as defined in this work, is to maximize the objective

function 𝐹 (𝑃𝑖). The higher the value of the objective function, the
better the performance of the entire workflow regarding efficiency,

makespan, resource usage, and component placement.

5.2 Results and Analysis

Workflow ensemble configurations. In this work, we apply our

multi-stage performance indicators to two sets of configurations,

each of these sets specifies the number of ensemble members and

the node assignment for each ensemble components. In this paper,

we consider only workflow ensembles comprised of 2 ensemble

members. The first set of configurations includes 𝐶1.1 to 𝐶1.5 (Ta-

ble 2). For every configurations in this set, each ensemble member

is a single coupling of a simulation and an in situ analysis. A sec-

ond set is comprised of configurations ranging from 𝐶2.1 to 𝐶2.8

(Table 4). For configurations in this set, the simulation of each en-

semble member is coupled with two analyses. Since we propose a

multi-stage method for evaluating the performance of an ensem-

ble member as well as the entire workflow ensemble, we examine

the impact and the order of each stage on the quality of the per-

formance indicator 𝑃𝑖 by accumulating in the objective function

𝐹 (𝑃𝑖) for the performance of the entire workflow ensemble. To this

end, we explore two feasible paths that can be followed to concate-

nate performance indicator stages: (1) 𝑃U
𝑖

→ 𝑃
U,P
𝑖

→ 𝑃
U,P,A
𝑖

; or

(2) 𝑃U
𝑖

→ 𝑃
U,A
𝑖

→ 𝑃
U,A,P
𝑖

. For path (1), 𝑃
U,P
𝑖

= 𝑃U
𝑖
/𝑀 , where 𝑀 is

the total number of nodes used by the workflow ensemble (see Ta-

ble 3) and 𝑃
U,P,A
𝑖

= 𝑃
U,P
𝑖

×𝐶𝑃𝑖 , where𝐶𝑃𝑖 is the placement indicator

defined in Section 4.3. Note that 𝑃
U,P,A
𝑖

= 𝑃
U,A,P
𝑖

. Specifically, we

observe changes in 𝐹 (𝑃𝑖) when adding a new stage (i.e., resource

usage U, resource provisioning P, resource allocation A) to the per-

formance indicator 𝑃𝑖 , which can be either 𝑃U
𝑖
, 𝑃

U,P
𝑖

, 𝑃
U,A
𝑖

, 𝑃
U,P,A
𝑖

,

and 𝑃
U,A,P
𝑖

, and assess the ability of our indicator to accurately

assess the performance of different co-location configurations.

Results. Figure 8 demonstrates the results of the objective perfor-

mance function at each of the multiple stages of 𝑃𝑖 over different

configurations in the first set. After the initial stage of 𝑃U
𝑖
(Figure 8

left), a new layer is added, either P in the middle top figure or A on

the middle bottom to form the next stage. On the contrary of 𝑃
U,A
𝑖

,

𝑃
U,P
𝑖

is not able to differentiate the performance of 𝐶1.4 from 𝐶1.5

as these two configurations both use 2 compute nodes. Recall that

in 𝐶1.4, the two simulations share a node while the two analyses

share another node. As shown in Figures 3 and 4,𝐶1.4 does not lead

to good member makespans due to the contention of co-location

between two analyses. With 𝑃
U,A,P
𝑖

, we observe the characteriza-

tion where the performance of𝐶1.4 is degraded to lower than𝐶1.5,

but higher than 𝐶1.1,𝐶1.2,𝐶1.3. Finally, our performance indicator

confirms that𝐶1.5 is the best choice, as demonstrated by traditional

metrics in Figures 4 and 5 that 𝐶1.5 has the smallest makespans.

𝐶1.5 outperforms other configurations, which also validate the

common intuition behind in situ processing that simulations and

analyses must be co-located when possible. Since the in-memory

staging mechanism in this work is implemented by DIMES [30],

in which data resides on the memory of the simulation node, co-

locating the analysis having data coupling with such the simulation

can be beneficial from data locality to shorten the time of staging

data.

By opposition to the first set of configurations, for the second set,

we do not show the results of traditional metrics (described in Ta-

ble 1) due to the lack of space. However, experimental results of

these metrics when using the second set of configurations are not as

straightforward as the first on inferring from the metrics monitored

which configuration is the best. More number of analyses involved

in an ensemble member complicates the performance evaluation

using traditional metrics. The fact of utilizing the whole cores of

compute nodes in several configurations, e.g.𝐶2.6,𝐶2.7,𝐶2.8, likely

saturates the resources, which brings difficulties in comparing them

with other configurations where compute nodes are not entirely

occupied by ensemble components. This situation motivates the

need for a performance indicator able to elect the best potential con-

figuration in terms of efficiency of the workflow ensemble. Figure 9

shows the values taken by the objective function when instantiated

with different configurations in the second set. In this case, 𝑃
U,P
𝑖

separates the set of configurations in two groups defined by the

number of compute nodes used by the workflow ensemble (𝐶2.6,

𝐶2.7 and 𝐶2.8 uses 2 nodes when the other configurations use 3

nodes). Then, 𝑃
U,P,A
𝑖

keeps this distinction but in addition indicates

that configuration 𝐶2.8 should return better performance than the

others. On the other hand, when adding layer A, we first isolate𝐶2.8

from the other configurations, and further differentiate 𝐶2.6,𝐶2.7

Assessing Resource Provisioning and Allocation of Ensembles of In Situ Workflows ICPP Workshops ’21, August 9–12, 2021, Lemont, IL, USA

Configuration

Number of

computing

nodes (𝑁)

Number of

ensemble

members

Node indexes

Ensemble member 1 Ensemble member 2

Simulation 1 Analysis 1.1 Analysis 1.2 Simulation 2 Analysis 2.1 Analysis 2.2

C2.1 3 2 𝑛0 𝑛2 𝑛2 𝑛1 𝑛2 𝑛2
C2.2 3 2 𝑛0 𝑛1 𝑛1 𝑛0 𝑛2 𝑛2
C2.3 3 2 𝑛0 𝑛1 𝑛2 𝑛0 𝑛1 𝑛2
C2.4 3 2 𝑛0 𝑛0 𝑛2 𝑛1 𝑛1 𝑛2
C2.5 3 2 𝑛0 𝑛1 𝑛2 𝑛1 𝑛0 𝑛2
C2.6 2 2 𝑛0 𝑛1 𝑛1 𝑛0 𝑛1 𝑛1
C2.7 2 2 𝑛0 𝑛0 𝑛1 𝑛1 𝑛0 𝑛1
C2.8 2 2 𝑛0 𝑛0 𝑛0 𝑛1 𝑛1 𝑛1

Table 4: Experimental configurations with two ensemble members, each ensemble member has two analyses per simulation.

C1.1 C1.2 C1.3 C1.4 C1.5

3.2

3.4

3.6

O
bj

ec
ti

ve
fu

nc
ti

on
F

(P
i) Pi = PU

i

C1.1 C1.2 C1.3 C1.4 C1.5

1.25
1.50
1.75

Pi = PU,P
i

C1.1 C1.2 C1.3 C1.4 C1.5
0.5

1.0

1.5

Pi = PU,P,A
i = PU,A,P

i

C1.1 C1.2 C1.3 C1.4 C1.5

2

3

Pi = PU,A
i

Figure 8: 𝐹 (𝑃𝑖) on different 𝑃𝑖 orders over configurations which have one analysis per simulation (the higher the better).

C2.1C2.2C2.3C2.4C2.5C2.6C2.7C2.8
2.4

2.5

2.6

2.7

O
bj

ec
ti

ve
fu

nc
ti

on
F

(P
i) Pi = PU

i

C2.1C2.2C2.3C2.4C2.5C2.6C2.7C2.8

1.00
1.25

Pi = PU,P
i

C2.1C2.2C2.3C2.4C2.5C2.6C2.7C2.8

0.5

1.0

Pi = PU,P,A
i = PU,A,P

i

C2.1C2.2C2.3C2.4C2.5C2.6C2.7C2.8
1

2

Pi = PU,A
i

Figure 9: 𝐹 (𝑃𝑖) on different 𝑃𝑖 orders over configurations which have two analyses per simulation (the higher the better).

from 𝐶2.1,𝐶2.2,𝐶2.4 at the last stage. Note that, similarly to con-

clusions reached in the previous setup, the chosen configuration

𝐶2.8 is also the optimal configuration in terms of co-location (i.e,

simulation is collocated with its analyses) which again confirms

the benefits of co-locating coupled components of an ensemble

member.

6 RELATEDWORK
Modern scientific workflows commonly feature multiple coupled

components, which need to be monitored at the same time to under-

stand the global performance of the workflow. Recent monitoring

systems for scientific workflows use system-level information to

extract insights into the execution of the workflows. LDMS [2]

developed distributed profiling services to periodically sample re-

source utilization metrics of compute nodes the workflow runs

on. SOS [28] relied on conventional HPC monitoring tools [25]

to build an online characterization that can be run alongside the

workflow execution to analyze workflow behaviors. However, tra-

ditional performance tools are not designed for modern workflows

featuring in situ processing. They collect potentially unnecessary

data and incur potentially significant overheads of profiling. Several

works have addressed monitoring overhead by introducing their

particular methods to evaluate a subset of desired features of the

workflows. Taufer et al. [26] leveraged domain-specific metrics such

as lost frames to characterize in situ analytic tasks using various job

mappings. Zacarias et al. [29] estimated the performance degrada-

tion arising from co-located applications using a machine learning

model. SeeSAw [19] maximized the performance of in situ analysis

under power constraints using energy management approaches.

WOWMON [31] implemented a runtime that provides a monitor-

ing scheme for scientific workflows composed of in situ tasks by

collecting a set of proposed metrics, and a machine learning-based

performance diagnosis to validate if the collected metrics are neces-

sary or redundant. While these works focused on in situ workflows,

evaluating the performance of the workflow ensembles is not a

straightforward extension of evaluating individual workflows. Our

work defines the performance of ensembles of in situ workflows.

Ensemble-based methods [10, 11, 22, 24] recently gained atten-

tion in the computational science, mainly due to the growth of

computing power of large-scale systems allowing more simulations

to run in parallel. Ensembles are an efficient approach for enhancing

sampling techniques, exploring broader configuration space and

overcoming the local minima problem observed in scientific simu-

lations. Multiple-walker [11, 24] allowed faster convergence and

better sampling by exploiting multiple replicas that simultaneously

ICPP Workshops ’21, August 9–12, 2021, Lemont, IL, USA Do et al.

explore free-energy landscape along with transition coordinates

of the system. Generalized ensembles [10, 22] explored multiple

states of a simulation in ensembles with a probability weight factor

so that a random walk in a particular state can escape the energy

barrier.

Several recent efforts attempted to efficiently manage the execu-

tion of ensemble-based simulations combined with analysis tasks.

John et al. [23] proposed aworkflowmanagement system that stores

task provenances to enable adaptive ensemble simulation. EnTK [5]

is a general-purpose toolkit that abstracts components and tasks

in an ensemble-based workflow to support various scenarios in

which the number of tasks or task dependencies can vary. Both

of these works rely on RADICAL-Pilot as a runtime system [20].

However, these works study workflow ensembles with traditional

data coupling among tasks (i.e., non in situ) while, in this paper, we

focus on ensembles workflows comprising in situ tasks.

7 CONCLUSION
In this paper, we have characterized an ensemble of in situ work-

flows using multiple configurations and placements. Based on the

insights gained from this characterization, we have introduced a

theoretical framework that models the execution of workflow en-

sembles when multiple simulations are coupled with multiple anal-

yses using in situ techniques. We have then defined the notion

of efficiency for workflow ensembles at component, member, and

ensemble levels, and we designed several performance indicators.

These indicators capture the performance of workflow ensemble

by aggregating several metrics of the given workflow ensemble in

terms of resource usage efficiency and resources allocated for com-

ponents, members and the entire ensemble. By evaluating these

indicators on a real molecular dynamic simulation use case, we

have shown the advantages of data locality when co-locating the

simulation with the corresponding analyses in an ensemble mem-

ber. This finding allows us to schedule each ensemble member of

the workflow ensemble individually on a distinct allocation, wor-

rying only about the co-location among ensemble components

of each ensemble member. Future work will consider leveraging

the proposed indicators for scheduling in situ components of a

workflow ensemble under resource constraints.

ACKNOWLEDGMENTS
This work is funded by NSF contracts #1741040, #1741057, and

#1841758; and DOE contract #DE-SC0012636. This research used

resources of NERSC, a U.S. Department of Energy Office of Science

User Facility operated under Contract No. DE-AC02-05CH11231.

REFERENCES
[1] 2021. NERSC, Lawrence Berkeley National Laboratory’s Supercomputer Cori.

https://www.nersc.gov/users/computational-systems/cori

[2] Anthony Agelastos et al. 2014. The Lightweight Distributed Metric Service: A

Scalable Infrastructure for Continuous Monitoring of Large Scale Computing

Systems and Applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’14). 154–165.

[3] Dong H Ahn et al. 2020. Flux: Overcoming scheduling challenges for exascale

workflows. Future Generation Computer Systems 110 (2020), 202–213.
[4] Nurunisa Akyuz et al. 2015. Transport domain unlocking sets the uptake rate of

an aspartate transporter. Nature 518, 7537 (2015).
[5] Vivek Balasubramanian et al. 2020. Adaptive Ensemble Biomolecular Applications

at Scale. SN Computer Science 1, 2 (2020), 104.

[6] Alessandro Barducci et al. 2011. Metadynamics. WIREs Computational Molecular
Science 1, 5 (2011).

[7] P Bjelkmar et al. 2010. Implementation of the CHARMMForce Field in GROMACS:

Analysis of Protein Stability Effects from Correction Maps, Virtual Interaction

Sites, and Water Models. J. Chem. Theory Comput. 6, 2 (2010).
[8] S. Caíno-Lores et al. 2020. Applying big data paradigms to a large scale scientific

workflow: Lessons learned and future directions. Future Generation Computer
Systems 110 (2020), 440–452.

[9] T. E. Cheatham III et al. 2015. The Impact of Heterogeneous Computing on

Workflows for Biomolecular Simulation and Analysis. Computing in Science
Engineering 17, 2 (2015).

[10] Riccardo Chelli et al. 2012. Serial Generalized Ensemble Simulations of

Biomolecules with Self-Consistent Determination ofWeights. Journal of Chemical
Theory and Computation 8, 3 (2012).

[11] Jeffrey Comer et al. 2014. Multiple-Replica Strategies for Free-Energy Calculations

in NAMD: Multiple-Walker Adaptive Biasing Force and Walker Selection Rules.

Journal of Chemical Theory and Computation 10, 12 (2014).

[12] Daniel Dauwe et al. 2014. Modeling the Effects on Power and Performance

from Memory Interference of Co-located Applications in Multicore Systems. In

Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications. WorldComp.

[13] Tu Mai Anh Do et al. 2021. A lightweight method for evaluating in situ workflow

efficiency. Journal of Computational Science 48 (2021).
[14] Rafael Ferreira da Silva et al. 2019. Measuring the impact of burst buffers on

data-intensive scientific workflows. Future Generation Computer Systems 101
(2019).

[15] Q. Jiang et al. 2015. Executing Large Scale Scientific Workflow Ensembles in

Public Clouds. In 2015 44th International Conference on Parallel Processing. IEEE,
Beijing, China, 520–529.

[16] Travis Johnston et al. 2017. In situ data analytics and indexing of protein trajec-

tories. Journal of Computational Chemistry 38, 16 (2017).

[17] Mahzad Khoshlessan et al. 2020. Parallel performance of molecular dynamics

trajectory analysis. Concurrency and Computation: Practice and Experience 32
(2020).

[18] Maciej Malawski et al. 2015. Algorithms for cost- and deadline-constrained

provisioning for scientific workflow ensembles in IaaS clouds. Future Generation
Computer Systems 48 (2015), 1–18. Special Section: Business and Industry Specific
Cloud.

[19] I. Marincic et al. 2020. SeeSAw: Optimizing Performance of In-Situ Analytics

Applications under Power Constraints. In 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, New Orleans, LA, USA, 789–798.

[20] Andre Merzky et al. 2019. Using Pilot Systems to Execute Many Task Workloads

on Supercomputers. In Job Scheduling Strategies for Parallel Processing, Dalibor
Klusáček, Walfredo Cirne, and Narayan Desai (Eds.).

[21] Oscar H. Mondragon et al. 2016. Understanding Performance Interference in

Next-Generation HPC Systems. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC ’16). Article
33, 12 pages.

[22] Yuko Okamoto. 2004. Generalized-ensemble algorithms: enhanced sampling

techniques for Monte Carlo and molecular dynamics simulations. Journal of
Molecular Graphics and Modelling 22, 5 (2004).

[23] John Ossyra et al. 2019. Porting Adaptive Ensemble Molecular Dynamics Work-

flows to the Summit Supercomputer. In High Performance Computing.
[24] Paolo Raiteri et al. 2006. Efficient Reconstruction of Complex Free Energy Land-

scapes by Multiple Walkers Metadynamics. The Journal of Physical Chemistry B
110, 8 (2006), 3533–3539. PMID: 16494409.

[25] Sameer S. Shende et al. 2006. The Tau Parallel Performance System. The Interna-
tional Journal of High Performance Computing Applications 20, 2 (2006).

[26] M. Taufer et al. 2019. Characterizing In Situ and In Transit Analytics of Molecular

Dynamics Simulations for Next-Generation Supercomputers. In 15th International
Conference on eScience (eScience).

[27] Jeffrey S. Vetter et al. 2018. Extreme Heterogeneity 2018 - Productive Computational
Science in the Era of Extreme Heterogeneity: Report for DOE ASCR Workshop on Ex-
treme Heterogeneity. Technical Report. Lawrence Berkeley National Lab.(LBNL).

[28] Chad Wood et al. 2016. A Scalable Observation System for Introspection and in

Situ Analytics. In Proceedings of the 5th Workshop on Extreme-Scale Programming
Tools (ESPT ’16). IEEE Press, Salt Lake City, Utah, 42–49.

[29] F. V. Zacarias et al. 2019. Intelligent Colocation of Workloads for Enhanced Server

Efficiency. In 2019 31st International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD). IEEE, Campo Grande, Brazil, 120–127.

[30] Fan Zhang et al. 2017. In-memory staging and data-centric task placement for

coupled scientific simulation workflows. Concurrency and Computation: Practice
and Experience 29, 12 (2017).

[31] Xuechen Zhang et al. 2016. WOWMON: A Machine Learning-based Profiler for

Self-adaptive Instrumentation of Scientific Workflows. Procedia Computer Science
80 (2016), 1507–1518. International Conference on Computational Science 2016,

ICCS.

https://www.nersc.gov/users/computational-systems/cori

	Abstract
	1 Introduction
	2 Workflow ensemble
	2.1 Definitions
	2.2 Experimental Setup
	2.3 Analyzing workflow ensemble co-location

	3 Efficiency Model
	3.1 Application Model
	3.2 In Situ Step
	3.3 Computational Efficiency
	3.4 Discussion

	4 Performance Indicators
	4.1 Notations
	4.2 Member Resource Usage (U)
	4.3 Member Resource Allocation (A)
	4.4 Ensemble Resource Provisioning (P)

	5 Experimental Evaluation
	5.1 Ensemble-level Performance Indicator
	5.2 Results and Analysis

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

