
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1–20
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Controlling fairness and task granularity
in distributed, online, non-clairvoyant workflow executions

Rafael Ferreira da Silva1,2∗, Tristan Glatard1,3, Frédéric Desprez4

1University of Lyon, CNRS, INSERM, CREATIS, Villeurbanne, France
2University of Southern California, Information Sciences Institute, Marina Del Rey, CA, USA

3McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Canada
4INRIA, University of Lyon, LIP, ENS Lyon, Lyon, France

SUMMARY

Distributed computing infrastructures are commonly used for scientific computing, and science gateways
provide complete middleware stacks to allow their transparent exploitation by end-users. However,
administrating such systems manually is time-consuming and sub-optimal due to the complexity of the
execution conditions. Algorithms and frameworks aiming at automating system administration must deal
with online and non-clairvoyant conditions, where most parameters are unknown and evolve over time. We
consider the problem of controlling task granularity and fairness among scientific workflows executed in
these conditions. We present two self-managing loops monitoring the fineness, coarseness, and fairness of
workflow executions, comparing these metrics to thresholds extracted from knowledge acquired in previous
executions, and planning appropriate actions to maintain these metrics to appropriate ranges. Experiments
on the European Grid Infrastructure show that our task granularity control can speed-up executions up to
a factor of 2, and that our fairness control reduces slowdown variability by 3 to 7 compared to first-come-
first-served. We also study the interaction between granularity control and fairness control: our experiments
demonstrate that controlling task granularity degrades fairness, but that our fairness control algorithm can
compensate this degradation. Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Distributed computing infrastructures, task granularity, fairness, scientific workflows,
online conditions, non-clairvoyant conditions.

1. INTRODUCTION

Distributed computing infrastructures (DCI) such as grids and clouds are becoming daily
instruments of scientific research, commonly exploited by science gateways [1] to offer transparent
service to end-users. However, the large scale of these infrastructures, their heterogeneity and the
complexity of their middleware stacks make them prone to software and hardware errors manifested
by uncompleted or under-performing executions. Substantial system administration efforts need to
be invested to improve quality of service, still at a non-optimal level.

Autonomic computing [2], in particular self-management, refers to the set of methods and
algorithms addressing this challenge with control loops based on Monitoring, Analysis, Planning,
Execution and Knowledge (MAPE-K). These algorithms have to cope with online conditions, where
the platform load and infrastructure status constantly change, and non-clairvoyant conditions, where
most of the applications’ and infrastructure’s characteristics are unknown. The interactions between

∗Correspondence to: 4676 Admiralty Way, Suite 1001, 90292, Marina del Rey, CA, USA. E-mail: rafsilva@isi.edu

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]



2 R. FERREIRA DA SILVA, T. GLATARD, F. DESPREZ

self-managing loops have to be properly studied to check that their individual objectives do not
conflict.

This paper focuses on the control of task granularity and fairness among executions described
as scientific workflows [3] in a science gateway. Task granularity is commonly optimized by
grouping, or clustering, tasks of a workflow execution to minimize the impact of data transfers,
task queuing times, and other overheads [4–13]. Group sizes have to be carefully tuned to avoid
harmful parallelism losses. Fairness is achieved when resources are allocated to scientific workflow
executions in proportion to their requirements rather than as a result of race conditions. A way to
quantify the fairness obtained for a particular workflow execution is to determine the slowdown
compared to an ideal situation where it would run alone on the whole infrastructure [14, 15]. Other
fairness metrics can also be used, as for instance in [16].

We describe two self-managing loops to control task granularity and fairness of scientific
workflows executed in online, non-clairvoyant conditions on DCIs. These algorithms periodically
evaluate metrics estimating the coarseness, fineness, and fairness of workflow executions. When
these metrics exceed thresholds determined from historical executions, pre-defined actions are
implemented: (i) tasks are grouped or de-grouped to adjust granularity (ii) tasks are re-prioritized to
improve fairness. These two loops were independently introduced and evaluated in [17] and [18].
In this work, we complement these previous presentations by studying the interaction between
the two algorithms. Adjusting task granularity obviously impacts resource allocation, therefore
fairness among executions. We approach this issue from an experimental angle, testing the following
hypotheses:

• H1: the granularity control loop reduces fairness among executions;
• H2: the fairness control loop avoids this reduction.

The paper is organized as follows. Section 2 reviews the work related to task grouping and
fairness control. Section 3 describes the two self-managing loops to control task granularity and
fairness. Section 4 presents experiments evaluating our two control processes independently, and
their interaction. Experiments are performed in real conditions, on the production system of the
European Grid Infrastructure (EGI) accessed through the Virtual Imaging Platform (VIP [19]).

2. RELATED WORK

Task grouping. The low performance of fine-grained tasks is a common problem in widely
distributed platforms where the scheduling overhead and queuing times are high, such as grid and
cloud systems. Several works have addressed the control of task granularity of bag of tasks. For
instance, Muthuvelu et al. [4] proposed an algorithm to group bag of tasks based on their granularity
size – defined as the processing time of the task on the resource. Resources are ordered by their
decreasing values of capacity (in MIPS) and tasks are grouped up to the resource capacity. This
process continues until all tasks are grouped and assigned to resources. Then, Keat et al. [5] and
Ang et al. [6] extended the work of Muthuvelu et al. by introducing bandwidth in the scheduling
framework to enhance the performance of task scheduling. Resources are sorted in decreasing order
of bandwidth, then assigned to grouped tasks downward ordered by processing requirement length.
The size of a grouped task is determined from the task cost in millions instructions (MI). Later,
Muthuvelu et al. [7] extended [4] to determine task granularity based on QoS requirements, task
file size, estimated task CPU time, and resource constraints. Meanwhile, Liu & Liao [8] proposed
an adaptive fine-grained job scheduling algorithm (AFJS) to group lightweight tasks according to
processing capacity (in MIPS) and bandwidth (in Mb/s) of the current available resources. Tasks
are sorted in decreasing order of MI, then clustered by a greedy algorithm. To accommodate with
resource dynamicity, the grouping algorithm integrates monitoring information about the current
availability and capability of resources. Afterwards, Soni et al. [9] proposed an algorithm to group
lightweight tasks into coarse-grained tasks (GBJS) based on processing capability, bandwidth,
and memory-size of the available resources. Tasks are sorted into ascending order of required
computational power, then, selected in first come first serve order to be grouped according to the

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



FAIRNESS AND TASK GRANULARITY CONTROL IN ONLINE, NON-CLAIRVOYANT CONDITIONS 3

capability of the resources. Zomaya and Chan [10] studied limitations and ideal control parameters
of task clustering by using genetic algorithms. Their algorithm performs task selection based on
the earliest task start time and task communication costs; it converges to an optimal solution of
the number of clusters and tasks per cluster. Although the reviewed works significantly reduce
communication and processing time, neither of them are non-clairvoyant and online at the same
time. Recently, Muthuvelu et al. [11, 12] proposed an online scheduling algorithm to determine
the task granularity of compute-intensive bag-of-tasks applications. The granularity optimization
is based on task processing requirements, resource-network utilisation constraint (maximum time
a scheduler waits for data transfers), and users QoS requirements (user’s budget and application
deadline). Submitted tasks are categorised according to their file sizes, estimated CPU times, and
estimated output file sizes, and arranged in a tree structure. The scheduler selects a few tasks
from these categories to perform resource benchmarking. Tasks are grouped according to seven
objective functions of task granularity, and submitted to resources. The process restarts upon task
arrival. In a collaborative work [13], we presented three balancing methods to address the load
balancing problem when clustering scientific workflow tasks. We defined three imbalance metrics
to quantitative measure workflow characteristics based on task runtime variation (HRV), task
impact factor (HIFV), and task distance variance (HDV). Although these are online approaches,
the solutions are still clairvoyant.

Fairness. Fairness among scientific workflow executions has been addressed in several studies
considering the scheduling of multiple scientific workflows, but to the best of our knowledge,
no algorithm was proposed in a non-clairvoyant and online case. For instance, Zhao and
Sakellariou [14] address fairness based on the slowdown of Directed Acyclic Graph (DAG);
they consider a clairvoyant problem where the execution time and the amount of data transfers
are known. Similarly, N’Takpé and Suter [20] propose a mapping procedure to increase fairness
among parallel tasks on multi-cluster platforms; they address an offline and clairvoyant problem
where tasks are scheduled according to one of the following three characteristics: critical path
length, maximal exploitable task parallelism, or amount of work to execute. Casanova et al. [15]
evaluate several scheduling online algorithms of multiple parallel task graphs (PTGs) on a single,
homogeneous cluster. Fairness is measured through the maximum stretch (a.k.a. slowdown) defined
by the ratio between the PTG execution time on a dedicated cluster, and the PTG execution time in
the presence of competition with other PTGs. Hsu et al. [21] propose an online HEFT-like algorithm
to schedule multiple workflows; they address a clairvoyant problem where tasks are ranked based
on the length of their critical path, and tasks are mapped to the resources with the earliest finish
time. Sommerfeld and Richter [22] present a two-tier HEFT-based grid workflow scheduler with
predictions of input-queue waiting times and task execution times; fairness among workflow tasks
is addressed by preventing HEFT to assign the highest ranks to the first tasks regardless of
their originating workflows. Hirales-Carbajal et al. [23] schedule multiple parallel workflows on
a grid in a non-clairvoyant but offline context, assuming dedicated resources. Their multi-stage
scheduling strategies consist of task labeling and adaptive allocation, local queue prioritization and
site scheduling algorithm. Fairness among workflow tasks is achieved by task labeling based on
task run time estimation. Recently, Arabnejad and Barbosa [24] proposed an algorithm addressing
an online but clairvoyant problem where tasks are assigned to resources based on their rank values;
task rank is determined from the smallest remaining time among all remaining tasks of the workflow,
and from the percentage of remaining tasks. Finally, in their evaluation of non-preemptive task
scheduling, Sabin et al. [25] assess fairness by assigning a fair start time to each task, defined by
the start time of the task on a complete simulation of all tasks whose queue time is lower than
that one. Any task which starts after its fair start time is considered to have been treated unfairly.
Results are trace-based simulations over a period of one month, but the study is performed in a
clairvoyant context. Skowron and Rzadca [26] proposed an online and non-clairvoyant algorithm
to schedule sequential jobs on distributed systems. They consider a non-clairvoyant model where
job’s processing time is unknown until the job completes. However, they assume that resources are
homogeneous (what is not the case on grid computing). In contrast, our method considers resource

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



4 R. FERREIRA DA SILVA, T. GLATARD, F. DESPREZ

performance, the execution of concurrent activities, and task dependency in scientific workflow
executions.

3. METHODS

Scientific workflows consist of activities linked by data and control dependencies. Activities are
bound to an application executable. At runtime, they are iterated on the data to generate tasks. A
workflow activity is said active if it has at least one waiting (queued) or running task. Tasks cannot
be pre-empted, i.e. only the tasks in status waiting can be modified. More details about our workflow
model are available in [27]. Tasks related to an activity are assumed independent from each other,
yet with similar cost (bag of tasks). It means that if these tasks were executed in the exact same
conditions, they would be of identical duration.

The following sub-sections describe our task granularity and fairness control processes. In all
the algorithms, η describes the degree quantifying the controlled variable (fineness, coarseness, or
unfairness), and τ describes the threshold beyond which actions have to be triggered. Indexes refer
to the controlled variable: f for fineness, c for coarseness, and u for unfairness. For instance, ηf is
the fineness degree, and τu is the unfairness threshold.

3.1. Task Granularity Control Process

Algorithm 1 describes our task granularity control composed of two processes: (i) the fineness
control process groups too fine task groups for which the fineness degree ηf is greater than
threshold τf , and (ii) the coarseness control process de-groups too coarse task groups for which
the coarseness degree ηc is greater than threshold τc. This subsection describes how ηf , ηc, τf and
τc are determined, and details the grouping and de-grouping algorithms.

Algorithm 1 Main loop for granularity control
1: input: n waiting tasks
2: create n 1-task groups Ti
3: while there is an active task group do
4: wait for timeout or task status change
5: determine fineness degree ηf
6: if ηf >τf then
7: group task groups using Algorithm 2
8: end if
9: determine coarseness degree ηc

10: if ηc >τc then
11: degroup coarsest task groups
12: end if
13: end while

Measuring fineness: ηf . Let n be the number of waiting tasks in a scientific workflow activity,
and m the number of task groups. Initially, 1 group is created for each task (n = m). Ti is the set
of tasks in group i, and ni is the number of tasks in Ti. Groups are a partition of the set of waiting
tasks:

⋂
i 6=j Tj = ∅ and

∑m
i=1 ni = n. The activity fineness degree ηf is the maximum of all group

fineness degrees fi:
ηf = max

i∈[1,m]
(fi). (1)

High fineness degrees indicate fine granularities. We use a max operator in this equation to ensure
that any task group with a too fine granularity will be detected. The fineness degree fi of group i is
defined as:

fi = di · ri, (2)

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



FAIRNESS AND TASK GRANULARITY CONTROL IN ONLINE, NON-CLAIRVOYANT CONDITIONS 5

where ri is the queuing ratio (described below), and di is the ratio between the transfer time of the
input data shared among all tasks in the activity, and the total execution time of the group:

di =
t̃ shared

t̃ shared + ni(t̃− t̃ shared)
,

where t̃ shared is the median transfer time of the input data shared among all tasks in the activity,
and t̃ is the sum of its median task phase durations corresponding to application setup, input
data transfer, application execution and output data transfer: t̃ = t̃ setup + t̃ input + t̃ exec + t̃ output.
Median values t̃ shared and t̃ are computed from values measured on completed tasks. When
less than 2 tasks are completed, medians remain undefined and the control process is inactive.
This online estimation makes our process non-clairvoyant with respect to the task duration which
is progressively estimated as the workflow activity runs. aware that using the median may be
inaccurate. However, without a model of the applications’ execution time, we must rely on observed
task durations. Using the whole time distribution (or at least its few first moments) may be more
accurate but it would complexify the method.

In equation 2, ri is the ratio between the max of the task current queuing times qi in the group
(measured for each task individually), and the total round-trip time (queuing+execution) of the
group:

ri =
maxj∈[1,ni] qj

maxj∈[1,ni] qj + t̃ shared + ni(t̃− t̃ shared)

The group queuing time is the max of all task queuing times in the group, while the group execution
time is the time to transfer shared input data plus the time to execute all task phases in the group
except for the transfers of shared input data. Note that di, ri, and therefore fi and ηf are in [0, 1]. ηf
tends to 0 when there is little shared input data among the activity tasks or when the task queuing
times are low compared to the execution times; in both cases, grouping tasks is indeed useless.
Conversely, ηf tends to 1 when the transfer time of shared input data becomes high, and the queuing
time is high compared to the execution time; grouping is needed in this case.

Thresholding fineness: τf . The threshold value for ηf separates configurations where the
activity’s fineness is acceptable (ηf ≤ τf ) from configurations where the activity is too fine
(ηf > τf ). We determine τf from execution traces, inspecting the modes of the distribution of ηf .
Values of ηf in the highest mode of the distribution, i.e. which are clearly separated from the others,
will be considered too fine. Threshold value determined from traces are likely to be dependent on
the execution conditions covered by the traces. In particular, traces have to be extracted from the
platform where the methods will be implemented.

The traces were collected from VIP [19] between January 2011 and April 2012, made available
through the science-gateway workload archive [28]. The data set contains 680, 988 tasks (including
resubmissions and replications) linked to activities of 2, 941 scientific workflows executed by 112
users; task average waiting time is about 36 min. Applications deployed in VIP are described as
scientific workflows executed using the MOTEUR workflow engine [29]. Resource provisioning and
task scheduling are provided by DIRAC [30] using so-called “pilot jobs”. Resources are provisioned
online with no advance reservations. Tasks are executed on the biomed virtual organization (VO)
of the European Grid Infrastructure (EGI)† which has access to some 150 computing sites world-
wide and to 120 storage sites providing approximately 4 PB of storage. Figure 1 (left) shows the
distribution of sites per country supporting the biomed VO.

The fineness degree ηf was computed after each event found in the data set. Figure 1 (right) shows
the histogram of these values. The histogram appears bimodal, which indicates that ηf separates the
platform configurations in two distinct groups, separated by the threshold value τf = 0.55. In our
case, this threshold value is visually determined from the histogram. Simple clustering methods

†http://www.egi.eu

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



6 R. FERREIRA DA SILVA, T. GLATARD, F. DESPREZ

such as k-means can be used to determine the threshold value automatically [31]. We consider that
these groups correspond to “acceptable fineness” (lowest mode) and “too fine granularity” (highest
mode). For ηf ≥ 0.55, task grouping will be triggered.

0

10

20

30

40

50

UK Fran
ce ItalyGerm

any

Neth
erlan

ds
Gree

ce
Spa

in
Port

ugalCroa
tia
Pola

nd
Bulg

ariaTurk
ey Braz

il
FYR

OMOthe
rs

F
re
qu
en
cy

Batch queues
Sites

ηf

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
6e

+
04

Figure 1. Distribution of sites and batch queues per country in the biomed VO (January 2013) (left) and
histogram of fineness incident degree sampled in bins of 0.05 (right).

Task grouping. Algorithm 2 describes our task grouping mechanism. Groups with fi > τf are
grouped pairwise until ηf ≤ τf or until the amount of waiting groups Q is smaller or equal to the
amount of running groups R. Although ηf ignores scattering (Eq. 1 uses a max), the algorithm
considers it by grouping tasks in all groups where fi > τf . Ordering groups by decreasing fi values
tends to equally distribute tasks among groups. The grouping process stops when Q ≤ R to avoid
parallelism loss. This condition also avoids conflicts with the de-grouping process described above.

Algorithm 2 Task grouping
1: input: f1 to fm //group fineness degrees, sorted in decreasing order
2: input: Q, R // number of queued and running task groups
3: for i = 1 to m− 1 do
4: j = i+ 1
5: while fi > τf and Q > R and j ≤ m do
6: if fj > τf then
7: Group all tasks of Tj into Ti
8: Recalculate fi using Equation 2
9: Q = Q− 1

10: end if
11: j = j + 1
12: end while
13: i = j
14: end for
15: Delete all empty task groups

Measuring coarseness: ηc. Condition Q > R used in Algorithm 2 ensures that all resources will
be exploited if the number of available resources is stationary. In case the number of available
resources decreases, the fineness control process may further reduce the number of groups. However,
if the number of available resources increases, task groups may need to be de-grouped to maximize
resource exploitation. This de-grouping is implemented by our coarseness control process.

The coarseness control process monitors the value of ηc defined as:

ηc =
R

Q+R
. (3)

The threshold value τc is set to 0.5 so that ηc > τc ⇔ Q < R.
When an activity is considered too coarse, its groups are ordered by increasing values of ηf and

the first groups (i.e. the coarsest ones) are split until ηc < τc. Note that de-grouping increases the
number of queued tasks, therefore tends to reduce ηc.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



FAIRNESS AND TASK GRANULARITY CONTROL IN ONLINE, NON-CLAIRVOYANT CONDITIONS 7

3.2. Fairness Control Process

Algorithm 3 describes our fairness control process. Fairness is controlled by allocating resources
to workflows according to their fraction of pending work. It is done by re-prioritising tasks in
workflows where the unfairness degree ηu is greater than a threshold τu. This section describes
how ηu and τu are computed, and details the re-prioritization algorithm.

Algorithm 3 Main loop for fairness control
1: input: m workflow executions
2: while there is an active workflow do
3: wait for timeout or task status change in any workflow
4: determine unfairness degree ηu
5: if ηu >τu then
6: re-prioritize tasks using Algorithm 4
7: end if
8: end while

Measuring unfairness: ηu. Let m be the number of workflows with an active activity. The
unfairness degree ηu is the maximum difference between the fractions of pending work:

ηu = Wmax −Wmin, (4)

with Wmin = min{Wi, i ∈ [1,m]} and Wmax = max{Wi, i ∈ [1,m]}. All Wi are in [0, 1]. For ηu =
0, we consider that resources are fairly distributed among all workflows; otherwise, some workflows
consume more resources than they should. The fraction of pending workWi of a workflow i ∈ [1,m]
is defined from the fraction of pending work wi,j of its ni active activities:

Wi = max
j∈[1,ni]

(wi,j) (5)

All wi,j are between 0 and 1. A high wi,j value indicates that the activity has a lot of pending work
compared to the others. We define wi,j as:

wi,j =
Qi,j

Qi,j +Ri,jPi,j
· T̂i,j , (6)

where Qi,j is the number of waiting tasks in the activity, Ri,j is the number of running tasks in
the activity, Pi,j is the performance of the activity, and T̂i,j is its relative observed duration. T̂i,j is
defined as the ratio between the median duration t̃i,j of the completed tasks in activity j and the
maximum median task duration among all active activities of all running workflows:

T̂i,j =
t̃i,j

maxv∈[1,m],w∈[1,n∗
i ](t̃v,w)

(7)

where t̃i,j is computed as t̃i,j = t̃setupi,j + t̃inputi,j + t̃execi,j + t̃outputi,j . Medians are progressively
estimated as tasks complete. At the beginning of the execution, T̂i,j is initialized to 1 and all medians
are undefined; when two tasks of activity j complete, t̃i,j is updated and T̂i,j is computed with
equation 7. In this equation, the max operator is computed only on n∗i ≤ ni activities with at least 2
completed tasks, i.e. for which t̃i,j can be determined.

In Eq. 6, the performance Pi,j of an activity varies between 0 and 1. A low Pi,j indicates that
resources allocated to the activity have bad performance for the activity; in this case, the contribution
of running tasks is reduced and wi,j increases. Conversely, a high Pi,j increases the contribution of
running tasks, therefore decreases wi,j . For an activity j with kj active tasks, we define Pi,j as:

Pi,j = 2

(
1− max

u∈[1,kj ]

{
tu

t̃i,j + tu

})
, (8)

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



8 R. FERREIRA DA SILVA, T. GLATARD, F. DESPREZ

ηu
F

re
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
6e

+
04

Figure 2. Histogram of the unfairness degree ηu sampled in bins of 0.05.

where tu = tsetupu + tinputu + texecu + toutputu is the sum of the estimated durations of task u’s phases.
Estimated task phase durations are computed as the max between the current elapsed time in the task
phase (0 if the task phase has not started) and the median duration of the task phase. Pi,j is initialized
to 1, and updated using Eq. 8 only when at least 2 tasks of activity j are completed.

If all tasks perform as the median, i.e. tu = t̃i,j , then maxu∈[1,kj ]

{
tu

t̃i,j+tu

}
= 0.5 and Pi,j = 1.

Conversely, if a task in the activity lasts significantly longer than the median, i.e. tu � t̃i,j , then

maxu∈[1,kj ]

{
tu

t̃i,j+tu

}
≈ 1 and Pi,j ≈ 0. This definition of Pi,j considers that bad performance leads

to a few tasks blocking the activity. Indeed, we assume that the scheduler does not deliberately favor
any activity and that performance discrepancies are manifested by a few “unlucky” tasks slowed
down by bad resources. Performance, in this case, has a relative definition: depending on the activity
profile, it can correspond to CPU, RAM, network bandwidth, latency, or a combination of those. We
admit that this definition of Pi,j is a bit rough. However, under our non-clairvoyance assumption,
estimating resource performance for the activity more accurately is hardly possible because (i) we
have no model of the application, therefore task durations cannot be predicted from CPU, RAM or
network characteristics, and (ii) network characteristics and even available RAM are shared among
concurrent tasks running on the infrastructure, which makes them hardly measurable.

Thresholding unfairness: τu. Task prioritisation is triggered when the unfairness degree is
considered critical, i.e ηu > τu. Similarly to the fineness degree, the unfairness degree ηu was
computed after each event found in the data set. Figure 2 shows the histogram of these values,
where only ηu 6= 0 values are represented. This histogram is clearly bi-modal, which is a good
property since it reduces the influence of τu. From this histogram, we choose τu = 0.2, a threshold
value that clearly separates the two modes. For ηu > 0.2, the execution is considered unfair and task
prioritization is triggered. In this particular case, the two modes are so well separated that the choice
of the threshold value is not critical: any value between 0.2 and 0.9 can safely be chosen as it will
have only minor effect on mode classification.

Task prioritization. The action taken to cope with unfairness is to increase the priority of ∆i,j

waiting tasks for all activities j of workflow i where wi,j −Wmin > τu. Running tasks cannot be
pre-empted. Task priority is an integer initialized to 1. ∆i,j is determined so that w̃i,j = Wmin + τu,
where w̃i,j is the estimated value of wi,j after ∆i,j tasks are prioritized. We approximate w̃i,j as:

w̃i,j =
Qi,j −∆i,j

Qi,j +Ri,jPi,j
T̂i,j ,

which assumes that ∆i,j tasks will move from status queued to running, and that the performance
of new resources will be maximal. It gives:

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



FAIRNESS AND TASK GRANULARITY CONTROL IN ONLINE, NON-CLAIRVOYANT CONDITIONS 9

Algorithm 4 Task re-prioritization
1: input: W1 to Wm //fractions of pending works
2: maxPriority = max task priority in all workflows
3: for i=1 to m do
4: if Wi −Wmin > τu then
5: for j=1 to ai do
6: //ai is the number of active activities in workflow i
7: if wi,j −Wmin > τu then
8: Compute ∆i,j from equation 9
9: for p=1 to ∆i,j do

10: if ∃ waiting task q in activity j with priority ≤ maxPriority then
11: q.priority = maxPriority + 1
12: end if
13: end for
14: end if
15: end for
16: end if
17: end for

∆i,j = Qi,j −

⌊
(τu +Wmin)(Qi,j +Ri,jPi,j)

T̂i,j

⌋
, (9)

where bc rounds a decimal down to the nearest integer value.
Algorithm 4 describes our task re-prioritization. maxPriority is the maximal priority value in all

workflows. The priority of ∆i,j waiting tasks is set to maxPriority+1 in all activities j of workflows i
where wi,j −Wmin > τu. Note that this algorithm takes into account scatter among Wi although ηu
ignores it (see Eq. 4). Indeed, tasks are re-prioritized in any workflow i for which Wi −Wmin > τu.

The method also accommodates online conditions. If a new workflow i is submitted, thenRi,j = 0

for all its activities and T̂i,j is initialized to 1. This leads to Wmax = Wi = 1, which increases ηu.
If ηu goes beyond τu, then ∆i,j tasks of activity j of workflow i have their priorities increased to
restore fairness. Similarly, if new resources arrive, then Ri,j increase and ηu is updated accordingly.

Table I shows a simple example of the interaction of the task granularity and fairness control
loops. The example illustrates the scenario where the granularity control loop reduces fairness
among executions, and the fairness control loops counterbalances this reduction.

4. EXPERIMENTS

The experiments presented hereafter evaluate the task granularity and fairness control processes
and their interaction. In the first scenario, we evaluate fairness, fineness and coarseness control
independently, under stationary and non-stationary loads. In the second scenario, we activate both
control processes to test the two hypotheses already mentioned in the introduction:

• H1: the granularity control loop reduces fairness among executions;
• H2: the fairness control loop avoids this reduction.

4.1. Experiment conditions and metrics

The target computing platform for these experiments is the biomed VO of EGI where the traces
used to determine τf and τu were acquired (see Section 3.1). To ensure resource limitation without
flooding the production system, experiments are performed only on 3 sites of different countries.
Tasks generated by MOTEUR are submitted using the DIRAC scheduler. We use MOTEUR 0.9.21,
configured to resubmit failed tasks up to 5 times, and with the task replication mechanism described

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



10 R. FERREIRA DA SILVA, T. GLATARD, F. DESPREZ

Consider two identical workflows, each of which composed of one activity with 10 tasks initially split in 10 groups,
and assume that task input data are shared among all tasks (i.e. t̃ shared = t̃ input). Let t̃ = 10 and t̃ shared = 7
(in arbitrary time units) obtained from two completed task groups. At time t, we assume R = 2 and Q = 6 for both
workflows with the following values for waiting task groups:

j maxk∈[1,nj ]
qk dj rj fj

5 50 0.70 0.83 0.58
6 48 0.70 0.82 0.58
7 45 0.70 0.81 0.57
8 43 0.70 0.81 0.57
9 41 0.70 0.80 0.56
10 40 0.70 0.80 0.56

Workflow 1 has the granularity control active, while Workflow 2 does not. For Workflow 1, Eq. 1 gives ηf = 0.58.
As ηf > τf = 0.55 and Q > R, the activity is considered too fine and task grouping is triggered.
Groups with fi > τf are grouped pairwise until ηf ≤ τf or Q ≤ R:

j maxk∈[1,nj ]
qk dj rj fj

11 [5,6] 50 0.53 0.79 0.42
12 [7,8] 45 0.53 0.77 0.41
13 [9,10] 41 0.53 0.76 0.40

Groups 5 and 6, 7 and 8, and 9 and 10 are grouped into groups 11, 12, and 13 for Workflow 1, while Workflow 2
remains with 6 task groups.
Let’s assume at time t′ > t, the following values:

i Qi,1 Ri,1 t̃i,1 Pi,1 T̂i,1 Wi = wi,1
1 1 2 10 1.0 1.0 0.33
2 5 1 10 1.0 1.0 0.83

The configuration is clearly unfair since Workflow 2 has more tasks to compute.
Eq. 4 gives ηu = 0.5. As ηu > τu = 0.2, the platform is considered unfair and task re-prioritization is triggered.
∆2,1 tasks from Workflow 2 should be prioritized. According to Eq. 9:

∆2,1 = Q2,1 −
⌊
(τu+W1)(Q2,1+R2,1P2,1)

T̂2,1

⌋
= 5−

⌊
(0.2+0.33)(5+1·1.0)

1.0

⌋
= 3

At time t′′ > t′:
i Qi,1 Ri,1 t̃i,1 Pi,1 T̂i,1 Wi = wi,1
1 1 2 10 0.9 1.0 0.35
2 2 4 10 1.0 1.0 0.33

.

Now, ηu = 0.02 < τu. The platform is considered fair and no action is performed.

Table I. Example of the interaction of the task granularity and fairness control loops.

in [32] activated. We use the DIRAC v6r6p2 instance provided by France-Grilles‡, with a first-
come, first-served policy imposed by submitting workflows with decreasing priority values for
the fairness control process experiment. Four real medical simulation workflows are considered:
GATE [33], SimuBloch [34], FIELD-II [35], and PET-Sorteo [36]; their main characteristics
are summarized on Table II.

‡https://dirac.france-grilles.fr

Workflow #Tasks CPU time Input Output tshared
GATE (CPU-intensive) 100 few minutes to one hour ∼115 MB ∼40 MB -
SimuBloch (data-intensive) 25 few seconds ∼15 MB < 5 MB 90%
FIELD-II (data-intensive) 122 few seconds to 15 minutes ∼208 MB ∼40 KB ∼40-60%
PET-Sorteo (CPU-intensive) 1→80→1→80→1→1 ∼10 minutes ∼20 MB ∼50 MB ∼50-80%

Table II. Workflow characteristics (→ indicate task dependencies).

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



FAIRNESS AND TASK GRANULARITY CONTROL IN ONLINE, NON-CLAIRVOYANT CONDITIONS 11

For all experiments, control and tested executions are launched simultaneously to ensure similar
grid conditions which may vary among repetitions because computing, storage, and network
resources are shared with other users. To cover different grid conditions, experiments are repeated
over a time period of 4 weeks.

Three different fairness metrics are used in the experiments. Firstly, the standard deviation of the
makespan, written σm, is a straightforward metric which can be used when identical workflows are
executed. Secondly, we define the unfairness µ as the area under the curve ηu during the execution:

µ =

M∑
i=2

ηu(ti) · (ti − ti−1),

where M is the number of time samples until the makespan. This metric measures if the fairness
process can indeed minimize ηu. Finally, the slowdown s of a completed workflow execution is
defined by [20]:

s =
Mmulti

Mown

where Mmulti is the makespan observed on the shared platform, and Mown is the estimated
makespan if it was executed alone on the platform. In our conditions, Mown is estimated as:

Mown = max
p∈Ω

∑
u∈p

tu,

where Ω is the set of task paths in the workflow, and tu is the measured duration of task u. This
assumes that concurrent executions only impact task waiting time, not performance. For instance,
network congestion or changes in performance distribution resulting from concurrent executions are
ignored. Our third fairness metric is σs, the standard deviation of the slowdown.

4.2. Task granularity control

The granularity control process was implemented as a plugin of the MOTEUR workflow manager,
receiving notifications about task status changes and task phase durations. The plugin then uses this
data to group and de-group tasks according to Algorithm 1, where the timeout value is set to 2
minutes.

Two sets of experiments are conducted, under different load patterns. Experiment 1 evaluates the
fineness control process under stationary load. It consists of separated executions of SimuBloch,
FIELD-II, and PET-Sorteo/emission. A workflow activity using our task grouping
mechanism (Fineness) is compared to a control activity (No-Granularity). Resource
contention on the execution sites is maintained high and constant so that no de-grouping is
required. Experiment 2 evaluates the interest of using the de-grouping control process under non-
stationary load. It uses activity FIELD-II. An execution using both fineness and coarseness control
(Fineness-Coarseness) is compared to an execution without coarseness control (Fineness)
and to a control execution (No-Granularity). Executions are started under resource contention,
but the contention is progressively reduced during the experiment. This is done by submitting
a heavy workflow before the experiment starts, and canceling it when half of the experiment
tasks are completed. As no online task modification is possible in DIRAC, we implemented
task grouping by canceling queued tasks and submitting grouped tasks as a new task. For each
grouped task resubmitted in the Fineness or Fineness-Coarseness executions, a task in
the No-Granularity is randomly selected and resubmitted too to ensure equal race conditions
for resource allocation (first-come, first-served policy), and that each execution faces the same re-
submission overhead.

Experiment 1 (stationary load). Figure 3 shows the makespan of SimuBloch, FIELD-II, and
PET-Sorteo/emission executions. Fineness yields a significant makespan reduction for
all repetitions. Table III shows the makespan (M ) values and the number of task groups. The task

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



12 R. FERREIRA DA SILVA, T. GLATARD, F. DESPREZ

grouping mechanism is not able to group all SimuBloch tasks in a single group because 2 tasks
must be completed for the process to have enough information about the application (i.e. t̃ shared

and t̃ can be computed). This is a constraint of our non-clairvoyant conditions, where task durations
cannot be determined in advance. FIELD-II tasks are initially not grouped, but as the queuing
time becomes important, tasks are considered too fine and grouped. PET-Sorteo/emission
is an intermediary case where only a few tasks are grouped. Results show that the task grouping
mechanism speeds up SimuBloch and FIELD-II executions up to a factor of 2.6, and
PET-Sorteo/emission executions up to a factor of 2.5.

SimuBloch FIELD−II PET−Sorteo/emission

0

2500

5000

7500

10000

Run 1 Run 2 Run 3 Run 4 Run 5 Run 1 Run 2 Run 3 Run 4 Run 5 Run 1 Run 2 Run 3 Run 4 Run 5

M
ak

es
pa

n 
(s

)

Fineness No−Granularity

Figure 3. Experiment 1: makespan for Fineness and No-Granularity executions for the 3 workflow
activities under stationary load.

SimuBloch FIELD-II PET-Sorteo
M (s) Groups M (s) Groups M (s) Groups

1 No-Granularity 5421 25 10230 122 873 80
Fineness 2118 3 5749 80 451 57

2 No-Granularity 3138 25 7734 122 2695 80
Fineness 1803 3 2982 75 1766 40

3 No-Granularity 1831 25 9407 122 1983 80
Fineness 780 4 4894 73 1047 53

4 No-Granularity 1737 25 6026 122 552 80
Fineness 797 6 3507 61 218 64

5 No-Granularity 3257 25 4865 122 1033 80
Fineness 1468 4 3641 91 831 71

Table III. Experiment 1: makespan (M ) and number of task groups for SimuBloch, FIELD-II and
PET-Sorteo/emission executions for the 5 repetitions.

Experiment 2 (non-stationary load). Figure 4 shows the makespan (top) and evolution of task
groups (bottom). Makespan values are reported in Table IV. In the first three repetitions, resources
appear progressively during workflow executions. Fineness and Fineness-Coarseness
speed up executions up to a factor of 1.5 and 2.1. Since Fineness does not benefit of newly arrived
resources, it has a lower speed up compared to No-Granularity due to parallelism loss. In the
two last repetitions, the de-grouping process in Fineness-Coarseness allows to reach similar
performance than No-Granularity, while Fineness is penalized by its lack of adaptation: a
slowdown of 20% is observed compared to No-Granularity. Table IV also shows the average
queuing time values for Experiment 2. The linear correlation coefficient between the makespan and
the average queuing time is 0.91, which indicates that the makespan evolution is indeed correlated
to the evolution of the queuing time induced by the granularity control process.

Our task granularity control process works best under high resource contention, when the amount
of available resources is stable or decreases over time (Experiment 1). Coarseness control can cope

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



FAIRNESS AND TASK GRANULARITY CONTROL IN ONLINE, NON-CLAIRVOYANT CONDITIONS 13

0

2000

4000

6000

Run 1 Run 2 Run 3 Run 4 Run 5

M
ak

es
pa

n 
(s

)

Fineness

Fineness−Coarseness

No−Granularity

Run 1 Run 2 Run 3 Run 4 Run 5

60

80

100

120

0 1000 2000 3000 4000 0 2000 4000 60000 2000 4000 6000 0 1000 2000 3000 0 10002000300040005000
Time (s)

Ta
sk

 g
ro

up
s

Fineness Fineness−Coarseness No−Granularity

Figure 4. Experiment 2: makespan (top) and evolution of task groups (bottom) for FIELD-II executions
under non-stationary load (resources arrive during the experiment).

Run 1 Run 2 Run 3 Run 4 Run 5
M (s) q̄ (s) M (s) q̄ (s) M (s) q̄ (s) M (s) q̄ (s) M (s) q̄ (s)

No-Granularity 4617 2111 5934 2765 6940 3855 3199 1863 4147 2295
Fineness 3892 2036 4607 2090 4602 2631 3567 1928 5247 2326
Fineness-Coarseness 2927 1708 3335 1829 3247 2091 2952 1586 4073 2197

Table IV. Experiment 2: makespan (M ) and average queuing time (q̄) for FIELD-II workflow execution
for the 5 repetitions.

with soft increases in the number of available resources (Experiment 2), but fast variations remain
difficult to handle. In the worst-case scenario, tasks are first grouped due to resource limitation, and
resources suddenly appear once all task groups are already running. In this case the de-grouping
algorithm has no group to handle, and granularity control penalizes the execution. Task pre-emption
should be added to the method to address this scenario. In addition, our method is dependent on the
capability to extract enough accurate information from completed tasks to handle active tasks using
median estimates. This may not be the case for activities which execute only a few tasks.

4.3. Fairness control

Fairness control was implemented as a MOTEUR plugin receiving notifications about task and
workflow status changes. Each workflow plugin forwards task status changes and t̃i,j values to
a service centralizing information about all the active workflows. This service then re-prioritizes
tasks according to Algorithms 3 and 4. As no online task modification is possible in DIRAC, we
implemented task prioritization by canceling and resubmitting queued tasks with new priorities.
This implementation decision adds an overhead to task executions. Therefore, the timeout value
used in Algorithm 3 is set to 3 minutes.

Three experiments are conducted. Experiment 3 tests whether unfairness among identical
workflows is properly addressed. It consists of three GATE workflows sequentially submitted, as
users usually do in the platform. Experiment 4 tests if the performance of very short workflow
executions is improved by the fairness mechanism. Its workflow set has three GATE workflows

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



14 R. FERREIRA DA SILVA, T. GLATARD, F. DESPREZ

Repetition 1 Repetition 2 Repetition 3 Repetition 4

0

10000

20000

30000

Fairness No−Fairness Fairness No−Fairness Fairness No−Fairness Fairness No−Fairness

M
ak

es
pa

n 
(s

)
Gate 1

Gate 2

Gate 3

Repetition 1 Repetition 2 Repetition 3 Repetition 4

0.00

0.25

0.50

0.75

1.00

0 10000 20000 300000 5000 10000 15000 200000 10000 20000 30000 0 500010000150002000025000
Time (s)

η f Fairness

No−Fairness

Repetition 1
σm(s) σs µ(s)

NF 4666 1.03 8758
F 1884 0.40 5292

Repetition 2
σm(s) σs µ(s)

NF 2541 0.50 4154
F 167 0.07 2367

Repetition 3
σm(s) σs µ(s)

NF 5791 2.10 13392
F 2007 0.84 7243

Repetition 4
σm(s) σs µ(s)

NF 1567 0.87 12283
F 706 0.24 6070

Figure 5. Experiment 3 (identical workflows). Top: comparison of the makespans; middle: unfairness degree
ηu; bottom: standard deviation of the makespan (σm), standard deviation of the slowdown (σs), and

unfairness (µ).

launched sequentially, followed by a SimuBloch workflow. Experiment 5 tests whether unfairness
among different workflows is detected and properly handled. Its workflow set consists of a GATE, a
FIELD-II, a PET-Sorteo and a SimuBloch workflow launched sequentially.

For each experiment, a workflow set using our fairness mechanism (Fairness – F) is compared
to a control workflow set (No-Fairness – NF). Fairness and No-Fairness are launched
simultaneously to ensure similar grid conditions. For each task priority increase in the Fairness
workflow set, a task in the No-Fairness workflow set task queue is also prioritized to ensure
equal race conditions for resource allocation. Experiment results are not influenced by the re-
submission process overhead since both Fairness and No-Fairness experience the same
overhead.

Experiment 3 (identical workflows). Figure 5 shows the makespan, unfairness degree ηu,
makespan standard deviation σm, slowdown standard deviation σs and unfairness µ for the 4
repetitions. The difference among makespans and unfairness degree values are significantly reduced
in all repetitions of Fairness. Both Fairness and No-Fairness behave similarly until ηu
reaches the threshold value τu = 0.2. Unfairness is then detected and the mechanism triggers task
prioritization. Paradoxically, the first effect of task prioritization is a slight increase of ηu. Indeed,
Pi,j and T̂i,j , that are initialized to 1, start changing earlier in Fairness than in No-Fairness
due to the availability of task duration values to compute t̃i,j . Note that ηu reaches similar
maximal values in both cases, but reaches them faster in Fairness. The fairness mechanism then
manages to decrease ηu back under 0.2 much faster than it happens in No-Fairness when tasks
progressively complete. Finally, slight increases of ηu are sporadically observed towards the end of
the execution. This is due to task replications performed by MOTEUR: when new tasks are created,
the fraction of pending work W increases, which has an effect on ηu. Quantitatively, the fairness
mechanism reduces σm up to a factor of 15, σs up to a factor of 7, and µ by about 2.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



FAIRNESS AND TASK GRANULARITY CONTROL IN ONLINE, NON-CLAIRVOYANT CONDITIONS 15

Repetition 1 Repetition 2 Repetition 3 Repetition 4

0

20000

40000

60000

Fairness No−Fairness Fairness No−Fairness Fairness No−Fairness Fairness No−Fairness

M
ak

es
pa

n 
(s

)
Gate 1

Gate 2

Gate 3

SimuBloch

Repetition 1 Repetition 2 Repetition 3 Repetition 4

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000 0 10000200003000040000 0 10000 20000 0 20000 40000 60000
Time (s)

η f Fairness

No−Fairness

Repetition 1
σs µ(s)

NF 94.88 17269
F 15.95 9085

Repetition 2
σs µ(s)

NF 100.05 16048
F 42.94 12543

Repetition 3
σs µ(s)

NF 87.93 11331
F 57.62 7721

Repetition 4
σs µ(s)

NF 213.60 28190
F 76.69 21355

Figure 6. Experiment 4 (very short execution). Top: comparison of the makespans; middle: unfairness degree
ηu; bottom: unfairness (µ) and standard deviation of the slowdown (σs).

Experiment 4 (very short execution). Figure 6 shows the makespan, unfairness degree ηu,
unfairness µ and slowdown standard deviation. In all cases, the makespan of the very short
SimuBloch executions is significantly reduced for Fairness. The evolution of ηu is coherent
with Experiment 1: a common initialization phase followed by an anticipated growth and decrease
for Fairness. Fairness reduces σs up to a factor of 5.9 and unfairness up to a factor of 1.9.

Table V shows the execution makespan (m), average wait time (w̄) and slowdown (s) values for
the SimuBloch execution launched after the 3 GATE. As it is a non-clairvoyant scenario where no
information about task execution time and future task submission is known, the fairness mechanism
is not able to give higher priorities to SimuBloch tasks in advance. Despite that, the fairness
mechanism speeds up SimuBloch executions up to a factor of 2.9, reduces task average wait time
up to factor of 4.4 and reduces slowdown up to a factor of 5.9.

Run Type m (secs) w̄ (secs) s

1 No-Fairness 27854 18983 196.15
Fairness 9531 4313 38.43

2 No-Fairness 27784 19105 210.48
Fairness 13761 10538 94.25

3 No-Fairness 14432 13579 182.68
Fairness 9902 8145 122.25

4 No-Fairness 51664 47591 445.38
Fairness 38630 27795 165.79

Table V. Experiment 4: SimuBloch’s makespan (m), average wait time (w̄), and slowdown (s).

Experiment 5 (different workflows). Figure 7 shows slowdown, unfairness degree, unfairness µ
and slowdown standard deviation σs for the 4 repetitions. Fairness slows down GATE while it
speeds up all other workflows. This is because GATE is the longest and the first to be submitted;
in No-Fairness, it is favored by resource allocation to the detriment of other workflows. The

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



16 R. FERREIRA DA SILVA, T. GLATARD, F. DESPREZ

evolution of ηu is similar to Experiments 3 and 4. σs is reduced up to a factor of 3.8 and unfairness
up to a factor of 1.9.

Repetition 1 Repetition 2 Repetition 3 Repetition 4

1

10

100

Fairness No−Fairness Fairness No−Fairness Fairness No−Fairness Fairness No−Fairness

S
lo

w
do

w
n FIELD−II

Gate

PET−Sorteo

SimuBloch

Repetition 1 Repetition 2 Repetition 3 Repetition 4

0.00

0.25

0.50

0.75

1.00

0 5000 100001500020000 0 10000 20000 0 20000 40000 0 5000100001500020000
Time (s)

η f Fairness

No−Fairness

Repetition 1
σs µ (s)

NF 40.29 4443
F 10.52 2689

Repetition 2
σs µ (s)

NF 192.58 4004
F 58.83 2653

Repetition 3
σs µ (s)

NF 81.81 25173
F 60.56 18537

Repetition 4
σs µ (s)

NF 11.61 6613
F 8.10 3303

Figure 7. Experiment 5 (different workflows). Top: comparison of the slowdown; middle: unfairness degree
ηu; bottom: unfairness (µ) and standard deviation of the slowdown (σs).

In all 3 experiments, fairness optimization takes time to begin because the method needs to
acquire information about the applications which are totally unknown when a workflow is launched.
We could think of reducing the time of this information-collecting phase, e.g. by designing
initialization strategies maximizing information discovery, but it couldn’t be totally removed.
Currently, the method works best for applications with a lot of short tasks because the first few
tasks can be used for initialization, and optimization can be exploited for the remaining tasks. The
worst-case scenario is a configuration where the number of available resources stays constant and
equal to the number of tasks in the first submitted workflow: in this case, no action could be taken
until the first workflow completes, and the method would not do better than first-come-first-served.
Pre-emption of running tasks should be considered to address that.

4.4. Interactions between task granularity and fairness control

In this section, we evaluate the interaction between both control processes in the same execution.
For this experiment, we consider executions of a set of SimuBloch workflows under high resource
contention. Two experiments are conducted. Experiment 6 tests whether the task granularity
control process penalizes fairness among workflow executions (H1); Experiment 7 tests whether
the fairness control process mitigates the unfairness created by the granularity control process
(H2). For each experiment, a workflow set where one workflow uses the granularity control
process (Granularity - G) is compared to a control workflow set (No-Granularity -
NG). A workflow set consists of three SimuBloch workflows sequentially submitted. In the
Granularity set, the first workflow has the granularity control process enabled, and the others
do not. Experiment 6 has a fairness service which only measures the unfairness among workflow
executions, but no action is triggered. In Experiment 7, task prioritization is triggered once
unfairness is detected.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



FAIRNESS AND TASK GRANULARITY CONTROL IN ONLINE, NON-CLAIRVOYANT CONDITIONS 17

Granularity and No-Granularity are launched simultaneously to ensure similar grid
conditions. Experiments 6 and 7 are also launched simultaneously. For each grouped task
resubmitted in the Granularity execution, a task in the No-Granularity is resubmitted
too in each experiment to ensure equal race conditions for resource allocation. Similarly, for each
task prioritized in Experiment 7, a task in the Experiment 6 is also prioritized to ensure equal race
conditions. Again, experiment results are not influenced by the submission process overhead since
both Granularity and No-Granularity of both experiments experience the same overhead.
Therefore, performance results obtained in Experiment 6 can be compared to the ones obtained in
Experiment 7, and vice-versa.

Experiment 6 (granularity without fairness). Figure 8 shows the slowdown, unfairness
degree ηu, makespan standard deviation σm, slowdown standard deviation σs, and unfairness µ for
the 4 repetitions. Both Granularity and No-Granularity executions behave similarly until
ηf reaches the threshold value τf = 0.55. Tasks are considered too fine and the mechanism triggers
task grouping. In all cases, the slowdown of the workflow executed with granularity (the first one
on the Granularity set) is the lowest, i.e. its execution benefits of the grouping mechanism
by saving waiting times and data transfers of shared input data. In the workflow set where the
granularity control process is enabled, the unfairness value is up to a factor of 2 higher when
compared to the workflow set where the granularity is disabled (No-Granularity). Hypothesis
H1 is therefore confirmed.

Repetition 1 Repetition 2 Repetition 3 Repetition 4

0

100

200

G NG G NG G NG G NG

S
lo

w
do

w
n

Repetition 1 Repetition 2 Repetition 3 Repetition 4

0.00

0.25

0.50

0.75

1.00

0 2000 4000 6000 8000 0 1000 2000 3000 4000 0 2000 4000 6000 0 5000 10000
Time (s)

η u NG

G

Repetition 1
σm(s) σs µ(s)

NG 2446 16.55 823
G 2962 21.94 1638

Repetition 2
σm(s) σs µ (s)

NG 15 3.24 503
G 1015 13.15 527

Repetition 3
σm(s) σs µ (s)

NG 1273 8.91 998
G 2566 11.01 1212

Repetition 4
σm(s) σs µ (s)

NG 1364 38.70 1040
G 2017 73.09 1250

Figure 8. Experiment 6 (granularity without fairness). Top: comparison of the slowdowns; middle: unfairness
degree ηu; bottom: unfairness and standard deviation of the makespan and slowdown.

Experiment 7 (granularity with fairness). Figure 9 shows the slowdown, unfairness degree ηu,
makespan standard deviation σm, slowdown standard deviation σs, and unfairness µ for the 4
repetitions. Both Granularity and No-Granularity executions have similar unfairness
values which confirms H2. The same behavior is observed in σm and σs for repetitions 1, 3, and 4.
This is not the case of repetition 2, in which resources suddenly appeared while tasks were being
grouped. This resulted in parallelism loss for some workflow executions while the others were less
impacted.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



18 R. FERREIRA DA SILVA, T. GLATARD, F. DESPREZ

Repetition 1 Repetition 2 Repetition 3 Repetition 4

0

50

100

150

200

G NG G NG G NG G NG

S
lo

w
do

w
n

Repetition 1 Repetition 2 Repetition 3 Repetition 4

0.00

0.25

0.50

0.75

0 2000 4000 6000 8000 0 1000 2000 3000 4000 0 2000 4000 6000 0 5000 10000
Time (s)

η u NG

G

Repetition 1
σm(s) σs µ(s)

NG 2848 15.41 445
G 2384 13.47 335

Repetition 2
σm(s) σs µ (s)

NG 78 0.11 501
G 456 0.23 455

Repetition 3
σm(s) σs µ (s)

NG 2758 6.11 718
G 1674 3.11 712

Repetition 4
σm(s) σs µ (s)

NG 1044 35.37 826
G 1028 34.53 754

Figure 9. Experiment 7 (granularity with fairness). Top: comparison of the slowdowns; middle: unfairness
degree ηu; bottom: unfairness and standard deviation of the makespan and slowdown.

5. CONCLUSION

We described two self-managing algorithms to control task granularity and fairness of scientific
workflow executions. The fineness of workflow activities is defined from queue waiting time and
estimated data transfer time of shared input data, their coarseness is measured based on the ratio of
the number of queued tasks related to the number of running tasks, and fairness among scientific
workflow executions is quantified from the fraction of pending work in workflow executions.
All these metrics are computed online, estimating task durations in a workflow activity with the
median duration of previous executions. Experiments conducted on the European Grid Infrastructure
demonstrate the relevance of these algorithms to speed-up workflow execution by saving data
transfers and queuing time, and to improve fairness among workflow executions in a science
gateway. Experiments testing the interaction between granularity and fairness control showed that
controlling granularity degrades fairness, but that our fairness control algorithm compensates this
degradation. The methods were implemented in the Virtual Imaging Platform, and we plan to use
them in production. We believe that they are generic enough to be re-used in other similar platforms.

Future work could target the initialization phase of the self-managing loops. Currently, when a
scientific workflow starts, no information about the duration of its tasks on the infrastructure is
available, which makes the methods completely blind until the first tasks complete. One approach
could be to initialize task durations based on historical information. A sensitivity analysis on the
influence of each terms of our metrics (di and ri for granularity; Ti,j and Pi,j for the fairness) could
also be done along with a comparison with scheduling algorithms such as Fair-Share [37]. Finally,
the interaction between control loops could also be explored analytically, identifying conditions on
the metrics (ηu, ηf , and ηc) to avoid conflicting objectives.

6. ACKNOWLEDGMENT

We thank the European Grid Infrastructure and its supporting National Grid Initiatives, in particular
France-Grilles, for providing the technical support, computing and storage facilities. Results
obtained in this paper were computed on the biomed virtual organization of the European Grid

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



FAIRNESS AND TASK GRANULARITY CONTROL IN ONLINE, NON-CLAIRVOYANT CONDITIONS 19

Infrastructure (http://www.egi.eu). This work was funded by the French National Agency for
Research under grant ANR-09-COSI-03 “VIP”. The research leading to this publication has also
received funding from the EC FP7 Programme under grant agreement 312579 ER-flow = Building
an European Research Community through Interoperable Workflows and Data. This work was
performed within the framework of the LABEX PRIMES (ANR-11-LABX-0063) of Université de
Lyon, within the program ”Investissementsd’Avenir” (ANR-11-IDEX-0007) operated by the French
National Research Agency (ANR).

REFERENCES

1. Kiss T. Science Gateways for the Broader Take-up of Distributed Computing Infrastructures. Journal of Grid
Computing Nov 2012; 10(4):599–600.

2. Kephart JO, Chess DM. The vision of autonomic computing. Computer Jan 2003; 36(1):41–50.
3. Taylor I, Deelman E, Gannon D. Workflows for e-Science: Scientific Workflows for Grids. Springer, 2006.
4. Muthuvelu N, Liu J, Soe NL, Venugopal S, Sulistio A, Buyya R. A dynamic job grouping-based scheduling for

deploying applications with fine-grained tasks on global grids. Proceedings of the 2005 Australasian workshop on
Grid computing and e-research - Volume 44, ACSW Frontiers ’05, Australian Computer Society, Inc.: Darlinghurst,
Australia, Australia, 2005; 41–48.

5. Ng WK, Ang TF, Ling TC, Liew CS. Scheduling framework for bandwidth-aware job grouping-based scheduling
in grid computing. Malaysian Journal of Computer Science 2006; 19.

6. Ang T, Ng W, Ling T, Por L, Liew C. A bandwidth-aware job grouping-based scheduling on grid environment.
Information Technology Journal 2009; 8:372–377.

7. Muthuvelu N, Chai I, Eswaran C. An adaptive and parameterized job grouping algorithm for scheduling grid jobs.
Advanced Communication Technology, 2008. ICACT 2008. 10th International Conference on, vol. 2, 2008; 975
–980.

8. Liu Q, Liao Y. Grouping-based fine-grained job scheduling in grid computing. ETCS ’09, vol. 1, 2009; 556 –559.
9. Soni VK, Sharma R, Mishra MK. Grouping-based job scheduling model in grid computing. World Academy of

Science, Engineering and Technology 2010; 41:781–784.
10. Zomaya A, Chan G. Efficient clustering for parallel tasks execution in distributed systems. 18th IPDPS, 2004;

167–174.
11. Muthuvelu N, Chai I, Chikkannan E, Buyya R. On-line task granularity adaptation for dynamic grid applications.

Algorithms and Architectures for Parallel Processing, LNCS, vol. 6081. Springer, 2010; 266–277.
12. Muthuvelu N, Vecchiola C, Chai I, Chikkannan E, Buyya R. Task granularity policies for deploying bag-of-task

applications on global grids. Future Generation Computer Systems 2013; 29(1):170 – 181, doi:10.1016/j.future.
2012.03.022. Including Special section: AIRCC-NetCoM 2009 and Special section: Clouds and Service-Oriented
Architectures.

13. Chen W, Ferreira da Silva R, Deelman E, Sakellariou R. Balanced task clustering in scientific workflows. eScience
(eScience), 2013 IEEE 9th International Conference on, 2013; 188–195, doi:10.1109/eScience.2013.40.

14. Zhao H, Sakellariou R. Scheduling multiple DAGs onto heterogeneous systems. 20th International Parallel and
Distributed Processing Symposium, IPDPS 2006, 2006, doi:10.1109/IPDPS.2006.1639387.

15. Casanova H, Desprez F, Suter F. On cluster resource allocation for multiple parallel task graphs. J. of Par. and Dist.
Computing 2010; 70(12):1193 – 1203.

16. Kleban S, Clearwater S. Fair share on high performance computing systems: what does fair really mean? Cluster
Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM International Symposium on, 2003;
146–153, doi:10.1109/CCGRID.2003.1199363.

17. Ferreira da Silva R, Glatard T, Desprez F. Workflow fairness control on online and non-clairvoyant distributed
computing platforms. Euro-Par 2013 Parallel Processing, Lecture Notes in Computer Science, vol. 8097, Wolf F,
Mohr B, Mey D (eds.). Springer Berlin Heidelberg, 2013; 102–113.

18. Ferreira da Silva R, Glatard T, Desprez F. On-line, non-clairvoyant optimization of workflow activity granularity
on grids. Euro-Par 2013 Parallel Processing, Lecture Notes in Computer Science, vol. 8097, Wolf F, Mohr B, Mey
D (eds.). Springer Berlin Heidelberg, 2013; 255–266.

19. Glatard T, Lartizien C, Gibaud B, Ferreira da Silva R, Forestier G, Cervenansky F, Alessandrini M, Benoit-Cattin
H, Bernard O, Camarasu-Pop S, et al.. A virtual imaging platform for multi-modality medical image simulation.
Medical Imaging, IEEE Transactions on jan 2013; 32(1):110 –118, doi:10.1109/TMI.2012.2220154.

20. N’Takpe T, Suter F. Concurrent scheduling of parallel task graphs on multi-clusters using constrained resource
allocations. Proceedings of the 2009 IEEE International Symposium on Parallel&Distributed Processing, IPDPS
’09, 2009; 1–8.

21. Hsu CC, Huang KC, Wang FJ. Online scheduling of workflow applications in grid environments. Future Generation
Computer Systems 2011; 27(6):860 – 870.

22. Sommerfeld D, Richter H. Efficient Grid Workflow Scheduling Using a Two-Tier Approach. Proceedings of
HealthGrid 2011, Bristol, UK, 2011.

23. Hirales-Carbajal A, Tchernykh A, Yahyapour R, González-Garcı́a JL, Röblitz T, Ramı́rez-Alcaraz JM. Multiple
workflow scheduling strategies with user run time estimates on a grid. Journal of Grid Computing 2012; 10:325–
346, doi:10.1007/s10723-012-9215-6.

24. Arabnejad H, Barbosa J. Fairness resource sharing for dynamic workflow scheduling on heterogeneous systems.
Parallel and Distributed Processing with Applications (ISPA), 2012 IEEE 10th International Symposium on, 2012;
633 –639.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



20 R. FERREIRA DA SILVA, T. GLATARD, F. DESPREZ

25. Sabin G, Kochhar G, Sadayappan P. Job fairness in non-preemptive job scheduling. Proceedings of the 2004
International Conference on Parallel Processing, ICPP ’04, 2004; 186–194.

26. Skowron P, Rzadca K. Non-monetary fair scheduling: A cooperative game theory approach. Proceedings of the
Twenty-fifth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’13, ACM: New York,
NY, USA, 2013; 288–297, doi:10.1145/2486159.2486169.

27. Montagnat J, Isnard B, Glatard T, Maheshwari K, Fornarino MB. A data-driven workflow language for grids based
on array programming principles. Proceedings of the 4th Workshop on Workflows in Support of Large-Scale Science,
WORKS ’09, ACM: New York, NY, USA, 2009; 7:1–7:10, doi:10.1145/1645164.1645171.

28. Ferreira da Silva R, Glatard T. A science-gateway workload archive to study pilot jobs, user activity, bag of tasks,
task sub-steps, and workflow executions. Euro-Par 2012: Parallel Processing Workshops (CGWS-2012), Lecture
Notes in Computer Science, vol. 7640, Caragiannis I, Alexander M, Badia R, Cannataro M, Costan A, Danelutto
M, Desprez F, Krammer B, Sahuquillo J, Scott S, et al. (eds.). Springer Berlin Heidelberg, 2013; 79–88.

29. Glatard T, Montagnat J, Lingrand D, Pennec X. Flexible and Efficient Workflow Deployment of Data-Intensive
Applications on Grids with MOTEUR. International Journal of High Performance Computing Applications
(IJHPCA) Aug 2008; 22(3):347–360.

30. Tsaregorodtsev A, Brook N, Ramo AC, Charpentier P, Closier J, Cowan G, Diaz RG, Lanciotti E, Mathe Z,
Nandakumar R, et al.. DIRAC3. The New Generation of the LHCb Grid Software. Journal of Physics: Conference
Series 2009; 219(6):062 029.

31. Ferreira da Silva R. A science-gateway for workflow executions: online and non-clairvoyant self-healing of
workflow executions on grids. PhD Thesis, Institut National des Sciences Appliquées de Lyon 2013.

32. Ferreira da Silva R, Glatard T, Desprez F. Self-healing of workflow activity incidents on distributed computing
infrastructures. Future Generation Computer Systems 2013; 29(8):2284 – 2294.

33. Jan S, Benoit D, Becheva E, Carlier T, Cassol F, Descourt P, Frisson T, Grevillot L, Guigues L, Maigne L, et al..
Gate v6: a major enhancement of the gate simulation platform enabling modelling of ct and radiotherapy. Physics
in medicine and biology 2011; 56(4):881–901.

34. Cao F, Commowick O, Bannier E, Ferré JC, Edan G, Barillot C. MRI estimation of T1 relaxation time using a
constrained optimization algorithm. MBIA’12 Proceedings of the Second international conference on Multimodal
Brain Image Analysis, Lecture Notes in Computer Science, vol. 7509, Yap PT, Liu T, Shen D, Westin CF, Shen L
(eds.), Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; 203–214.

35. Jensen J, Svendsen N. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound
transducers. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on march 1992; 39(2):262 –
267.

36. Reilhac A, Batan G, Michel C, Grova C, Tohka J, Collins D, Costes N, Evans A. Pet-sorteo: validation and
development of database of simulated pet volumes. Nuclear Science, IEEE Transactions on oct 2005; 52(5):1321 –
1328.

37. Henry GJ. The unix system: The fair share scheduler. AT&T Bell Laboratories Technical Journal 1984; 63(8):1845–
1857, doi:10.1002/j.1538-7305.1984.tb00068.x.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe


	Introduction
	Related Work
	Methods
	Task Granularity Control Process
	Fairness Control Process

	Experiments
	Experiment conditions and metrics
	Task granularity control
	Fairness control
	Interactions between task granularity and fairness control

	Conclusion
	Acknowledgment

