THESE

présentée a

L’ INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON
pour obtenir
LE GRADE DE DOCTEUR
EcoLE DOCTORALE : INFORMATIQUE ET M ATHEMATIQUES

Présentée par

Rafael FERREIRA DA SILVA

A science-gateway for workflow executions:
online and non-clairvoyant self-healing of
workflow executions on grids

Jury

Rapporteurs: ~ Eric RUTTEN - CR INRIA Grenoble

Thomas FAHRINGER - Professeur, University of Innsbruck
Directeur: Frédéric DESPREZ - DR INRIA, Laboratoire LIP
Co-Directeur: Tristan GLATARD - CR CNRS, Laboratoire CREATIS
Examinateurs: SilviaD. OLABARRIAGA - Assistant Professor, University of Amsterdam

Johan MONTAGNAT - DR CNRS, Laboratoire 13S

Hugues BENOIT-CATTIN - Professeur, INSA-Lyon

Martin QUINSON - Maitre de Conférences, Laboratoire LORIA

Acknowledgments

First of all, I would like to give my heartfelt dedication of this thesis to my precious girl-
friend Audrey for all of her love and understanding during these years. Without her support,
inspiration, confidence, and encouragement I would never be able to accomplish this work.

I would like to express my deepest and sincerest gratitude to my two thesis advisors, Tris-
tan Glatard, and Frédéric Desprez for their valuable guidance and consistent encouragement
throughout this work. I would like to specially thank Tristan Glatard for giving me the oppor-
tunity to be a software engineer of the VIP project, that led me to an interesting research topic
which is the subject of this work. Moreover, he taught me how to be a great researcher. Special
thanks go to Frédéric Desprez to have accepted to be my supervisor, for his advices, and to
open doors in my way.

I would like to express my gratitude to all my colleagues from Creatis, Sorina Cama-
rasu, Frédéric Cervenansky, Michaél Sdika, Delphine Charpigny, and Nouha Boujelben. Many
thanks go in particular to my good friends Ting Li, Sarra Ben Fredj, Ibrahim Kallel, and William
Romero for their collaboration and encouragements over these years.

I want to thank VIP ANR and ER-Flow projects for their financial support for my PhD.
I also would like to thank Ewa Deelman for the opportunity to be a visitor researcher in her
group for 3 months. Thanks for all my colleagues at ISI-USC, Gideon Juve, Karan Vahi, Mats
Rynge, Rajiv Mayani, Weiwei Chen, and Sepideh Azarnoosh.

Finally, I would like to acknowledge my familly, my parents Célia and Wellington, my

sister Danielly, my brother Sandro, and my three nieces Amanda, Teresa, and Maria Leticia.

Rafael FERREIRA DA SILVA

Abstract

Science gateways, such as the Virtual Imaging Platform (VIP), enable transparent access to
distributed computing and storage resources for scientific computations. However, their large
scale and the number of middleware systems involved in these gateways lead to many errors
and faults. In practice, science gateways are often backed by substantial support staff who
monitors running experiments by performing simple yet crucial actions such as rescheduling
tasks, restarting services, killing misbehaving runs or replicating data files to reliable storage
facilities. Fair quality of service (QoS) can then be delivered, yet with important human inter-
vention.

Automating such operations is challenging for two reasons. First, the problem is online by
nature because no reliable user activity prediction can be assumed, and new workloads may ar-
rive at any time. Therefore, the considered metrics, decisions and actions have to remain simple
and to yield results while the application is still executing. Second, it is non-clairvoyant due to
the lack of information about applications and resources in production conditions. Computing
resources are usually dynamically provisioned from heterogeneous clusters, clouds or desktop
grids without any reliable estimate of their availability and characteristics. Models of appli-
cation execution times are hardly available either, in particular on heterogeneous computing
resources.

In this manuscript, we propose a general self-healing process for autonomous detection and
handling of operational incidents in workflow executions. Instances are modeled as Fuzzy Fi-
nite State Machines (FuSM) where state degrees of membership are determined by an external
healing process. Degrees of membership are computed from metrics assuming that incidents
have outlier performance, e.g. a site or a particular invocation behaves differently than the oth-
ers. Based on incident degrees, the healing process identifies incident levels using thresholds
determined from the platform history. A specific set of actions is then selected from association
rules among incident levels.

This manuscript is composed by seven chapters organized in two parts. In the first part,
we address the design of a science-gateway and its components, and we introduce a work-
load archive that provides fine-grained information about application executions. The Virtual
Imaging Platform (VIP) is an open accessible platform to support the execution of workflow ap-
plications on distributed computing infrastructures. We present a complete overview of the ar-
chitecture, describing the tools and strategies used to exploit computing and storage resources.
The platform currently has 441 registered users who consumed 379 years of CPU time since
January 2011.

The science-gateway workload archive provides fundamental fine-grained information for
the development of our self-healing methods. Archives of distributed workloads acquired at
the infrastructure level lack information about users and application-level middleware. In this

thesis, we show the added value of this archive acquired in the science-gateway level on several

case studies related to user account, pilot jobs, fine-grained task analysis, bag of tasks, and
workflows.

In the second part of this thesis, we first introduce our self-healing process for autonomous
detection and handling of these operational incidents, and then we instantiate the healing pro-
cess to late task executions and task granularity incidents, and unfairness among workflow
executions incident. We present two methods to cope with the long-tail effect problem, and
a method to control task replication. No strong assumption is made on the task duration or
resource characteristics. Experimental results show that both methods properly detect blocked
activities and speed up workflow executions up to a factor of 4.5.

To optimize task granularity in distributed workflows, we present a method that groups
tasks when the fineness degree of the application becomes higher than a threshold determined
from execution traces. The algorithm also de-groups task groups when new resources arrive.
Results showed that under stationary load, our fineness control process significantly reduces
the makespan of all applications. Under non-stationary load, task grouping is penalized by its
lack of adaptation, but our de-grouping algorithm corrects it in case variations in the number of
available resources are not too fast.

Finally, we present a method to address unfairness among workflow executions. We define
a novel metric that quantifies unfairness based on the fraction of pending work in a workflow.
It compares workflow activities based on their ratio of queuing tasks, their relative durations,
and the performance of resources where tasks are running. Results show that our method can
very significantly reduce the standard deviation of the slowdown, and the average value of our

metric.

Keywords: error detection and handling, workflow execution, production distributed sys-

tems.

Résumé

Les science-gateways, telles que la Plate-forme d’Imagerie Virtuelle (VIP), permettent
I’acces a un grand nombre de ressources de calcul et de stockage de manicre transparente.
Cependant, la quantité d’informations et de couches intergicielles utilisées créent beaucoup
d’échecs et d’erreurs de systeme. Dans la pratique, ce sont souvent les administrateurs du sys-
teéme qui controlent le déroulement des expériences en réalisant des manipulations simples mais
cruciales, comme par exemple replanifier une tache, redémarrer un service, supprimer une exé-
cution défaillante, ou copier des données dans des unités de stockages fiables. De cette maniere,
la qualité de service fournie est correcte mais demande une intervention humaine importante.

Automatiser ces opérations constitue un défi pour deux raisons. Premierement, la charge
de la plate-forme est en ligne, c’est-a-dire que de nouvelles exécutions peuvent se présenter a
tout moment. Aucune prédiction sur 1’activité des utilisateurs n’est donc possible. De fait, les
modeles, décisions et actions considérés doivent rester simples et produire des résultats pendant
I’exécution de I’application. Deuxieémement, la plate-forme est non-clairvoyante a cause du
manque d’information concernant les applications et ressources en production. Les ressources
de calcul sont d’ordinaire fournies dynamiquement par des grappes hétérogenes, des clouds ou
des grilles de volontaires, sans estimation fiable de leur disponibilité ou de leur caractéristiques.
Les temps d’exécution des applications sont difficilement estimables également, en particulier
dans le cas de ressources de calculs hétérogenes.

Dans ce manuscrit, nous proposons un mécanisme d’auto-guérison pour la détection au-
tonome et traitement des incidents opérationnels dans les exécutions des chaines de traitement.
Les objets considérés sont modélisés comme des automates finis a états flous (FuSM) ou le de-
gré de pertinence d’un incident est déterminé par un processus externe de guérison. Les mod-
¢les utilisés pour déterminer le degré de pertinence reposent sur 1’hypothese que les erreurs,
par exemple un site ou une invocation se comportant différemment des autres, sont rares. Le
mécanisme d’auto-guérison détermine le seuil de gravité des erreurs a partir de I’historique de
la plate-forme. Un ensemble d’actions spécifiques est alors sélectionné par regle d’association
en fonction du niveau d’erreur.

Ce manuscrit complet comporte sept chapitres organisés en deux parties. Dans la pre-
miere partie, nous abordons la conception d’une science-gateway et de ses composants, et
nous présentons une archive des traces d’exécutions acquisent aupres de la science-gateway,
fournissant des informations détaillées sur les exécutions de 1’application. La Plate-forme
d’Imagerie Virtuelle (VIP) est une plate-forme ouverte et accessible pour I’exécution de
workflows sur des ressources de calcul distribuées. Nous présentons un appercu complet de
I’architecture, décrivant les outils et les stratégies utilisées pour exploiter les ressources de cal-
cul et de stockage. La plate-forme compte actuellement 441 utilisateurs enregistrés qui ont
consommés 379 années de temps de CPU depuis Janvier 2011.

L’archive des traces d’exécutions acquises aupres du science-gateway fournit des informa-

tions fondamentales pour le développement de nos méthodes d’auto-guérison. Les archives de
traces d’exécution acquises au niveau des infrastructures manquent d’information sur les util-
isateurs et les applications. Dans cette thése, nous montrons la valeur ajoutée de cette archive
sur plusieurs études de cas : le suivi de I’activité des utilisateurs, les taches pilotes, 1’analyse
détaillée des taches, les taches indépendantes (bag of tasks) et workflows.

Dans la deuxiéme partie de cette theése, nous présentons d’abord notre processus d’auto-
guérison pour la détection autonome et traitement des incidents opérationnels, et puis on in-
stancie le processus pour traiter le retard et la granularité des taches, et I'inégalité entre les
exécutions de workflow. Nous présentons deux méthodes pour traiter le probleme du retard de
taches, et une méthode pour contrdler la réplication des taches. Aucune hypothese forte n’est
faite sur la durée de la tache ou sur les caractéristiques des ressources. Les résultats expéri-
mentaux montrent que la méthode détecte correctement les activités bloquées et accélere les
exécutions jusqu’a 4,5 fois.

Pour optimiser la granularité des taches des workflows, nous présentons une méthode que
regroupe les taches lorsque le degré de finesse de 1’application devient supérieur a un seuil
déterminé a partir des traces d’exécution. L’algorithme dégroupe également des groupes de
taches lorsque de nouvelles ressources arrivent. Les résultats montrent que sous charge station-
naire, notre processus de contrdle de finesse réduit considérablement le temps d’exécution total
de toutes les applications. En cas de charge non stationnaire, le regroupement des taches est
pénalisé par son manque d’adaptation, mais notre algorithme de regroupement le corrige tant
que les variations du nombre de ressources disponibles ne sont pas trop rapides.

Enfin, nous présentons une méthode pour traiter I’'inégalité entre les exécutions de work-
flow. Nous définissons un modele qui quantifie I’inégalité basée sur la fraction de travail en
attente d’un workflow. Il compare les activités de workflow a partir de leur ratio de tache en
attente, leur durée moyenne, et la performance des ressources dans lesquelles les tiches sont en
cours. Les résultats montrent que notre méthode peut tres significativement réduire 1’écart type

du ralentissement.

Mots-clés: détection autonome et traitement des erreurs, exécutions des chaines de traite-

ment, systemes distribués en production.

Contents

Introduction

1 State of the art
1.1 Infrastructure and software for science-gateways
1.2 Self-healing of workflow executionson grids
1.3 Conclusions e e

I A science-gateway for workflow executions on grids

2 A science-gateway for
workflow executions on grids
2.1 Introduction e e
2.2 VIP architecture for workflow execution
2.3 Platformusage e e
2.4 Challenges and limitations

2.5 Conclusion s,

3 A science-gateway workload archive
3.1 Introduction L
3.2 A Science-Gateway Workload Archive
33 Casestudies e e e e e e e e

3.4 Conclusion

II Self-healing of workflow executions
on grids

4 A self-healing process for
workflow executions on grids

4.1 Introduction

18

23
24
31
35

37

39
40
41
49
50
52

53
54
55
56
61

65

67

4.2
43
4.4
4.5

General healing process e
HNlustration on task errors Lo
Improvements to mode detection

Conclusion e,

5 Handling blocked activities

5.1
52
53
54

Introduction L e e
Slope Contraction ot e e
Median Estimation e e

Conclusion e

6 Optimizing task granularity

6.1
6.2
6.3
6.4

Introduction L
Task Granularity Control Process
Experiments and Results oL,

ConclusSion

7 Controlling fairness among

workflow executions

7.1
7.2
7.3
7.4

Introduction L
Fairness control process o
Experiments andresults L L L L L oo

Conclusion

IIT Conclusions

8 Conclusion and perspectives

8.1
8.2

Contributions sSUMMAry v v vt e e e e e e e

Concluding remarks and future directions

IV Appendix

A Applications description

Al
A2
A3
A4
A5

FIELD-II o e

83
84
85
88
93

97
98
99
103
105

109
110
111
114
119

123

125
125
127

131

_— 136
Bibliography

2.2
2.3

24
2.5
2.9
2.10

3.1
3.2
33
34

3.5
3.6
3.7

3.8

39

4.1
4.2
4.3
4.4
4.5
4.6

List of Figures

Association among users, groups, classes and applications.

VIP screenshots: home page with applications (top) and application execution

Repartition of users per country on VIP in February 2013 (top) and VIP con-
sumption since August 2012 reported by France-Grilles (bottom).

Science-gateway archive model. 0oL
Histogram of tasks per pilot (top) and users per pilot (bottom).
Number of reported EGl and VIPusers.
Number of submitted pilot jobs (top), and consumed CPU and wall-clock time
(bottom) by the infrastructure (EGI) and the science gateway (VIP).
Different steps in task life. L.
Task error causes (left) and number of replicas per task (right).
Impact of parameter A on BoT sizes: minimum, maximum and average values
(left); and its distribution (right). e
CDFs of characteristics of batched and non-batched submissions: BoT sizes,
duration per BoT, inter-arrival time and consumed CPU time (A = 120s). . . .
Characteristics of workflow executions: number of tasks (fop left), CPU time
and makespan (fop right), speedup (bottom left) and critical path length (bottom
FIGRE). .« . o o e e e e e e e

Instances involved in a workflow execution.
Fuzzy Finite State Machine (FuSM) representing a general instance.
Example case showed as a MAPE-Kloop.
Example of incident levels for a threshold 7, =0.6.
Histograms of incident degrees sampled in binsof 5%.
Experiment 2: makespan of FIELD-II/pasa and Mean-Shift/hs3 for 3 dif-

ferentruns. L

42

61

62

63

70

4.7

5.1
5.2
5.3

54

5.5

5.6

5.7

5.8

6.1
6.2

6.3

7.1
7.2

7.3

7.4

A.l
A2
A3
A4
A5

Histograms of incident degrees clustered with K-Means sampled in bins of 5%. 81

Detection of blocked activity. L L 85
Histogram of activity blocked degree sampled in bins of 0.05.. 86
Execution makespan for FIELD-II/pasa (top) and Mean-Shift/hs3 (bot-
tom) by using the Slope Contractionmethod. 88
CDF of the number of completed tasks for FIELD-II/pasa (top) and

Mean-Shift/hs3 (bottom) repetitions by using the Slope Contraction

method. L 89
Task estimation based on median values. 90
Histogram of activity blocked degree sampled in bins of 0.05.. 91
Execution makespan for FIELD-II/pasa (top) and Mean-Shift/hs3 (bot-

tom) by using the Median Estimationmethod. 92

CDF of the number of completed tasks for FIELD-II/pasa (top) and
Mean-Shift/hs3 (bottom) repetitions by using the Median Estimation
method. e 95

Histogram of fineness incident degree sampled in bins of 0.05. 101
Experiment 1: makespan for Fineness and No-Granularity executions for
the 3 workflow activities under stationary load. 105
Experiment 2: makespan (top) and evolution of task groups (bottom) for
FIELD-II executions under non-stationary load (resources arrive during the
EXPErIMENL). . . . v v v v v e e e e e e e e e e e e e e e 106

Histogram of the unfairness degree 7, sampled in bins of 0.05. 113
Experiment 1 (identical workflows). Top: comparison of the makespans; mid-
dle: unfairness degree 1,; bottom: makespan standard deviation o, slowdown
standard deviation oy and unfairness &t. 118
Experiment 2 (very short execution). Top: comparison of the makespans; mid-
dle: unfairness degree 7,; bottom: unfairness u and slowdown standard deviation.119
Experiment 3 (different workflows). Top: comparison of the slowdown; mid-
dle: unfairness degree 7,; bottom: unfairness u and slowdown standard deviation.121

FIELD-II workflow. 133
Mean-Shift workflow.o 134
SimuBloch workflow. 134
PET-Sorteo workflow. 135

GATE workflow. e 135

2.1

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2

53

6.1
6.2
6.3

6.4

7.1
7.2
7.3

List of Tables

Distribution of sites and batch queues per country in the biomed VO (January
2013). . e 48

Consumed CPU time repartition among completed, errors, and stalled tasks of

aworkflow execution. 58
Examplecase. e e 72
Incident levels and actions. Lo 76
Confidence of rules between incident levels. 77

Experiment 1: occurrences of incident levels (cumulative values for 5 repetitions). 79

Number of submitted faulty tasks. 80
Incident levels determined with K-Means. 80
Workflow activity characteristics., 87
Waste coefficient values for FIELD-II/pasa (top) and Mean-Shift/hs3 (bot-

tom) by using the Slope Contractionmethod. 90
Waste coefficient values for FIELD-II/pasa (top) and Mean-Shift/hs3 (bot-

tom) by using the Median Estimationmethod. 93
Example 102
Workflow activity characteristics. 103
Experiment 1: makespan (M) and number of task groups for SimuBloch,

FIELD-ITI and PET-Sorteo/emission executions for the 5 repetitions. 105
Experiment 2: makespan (M) and average queuing time (g) for FIELD-II

workflow execution for the 5 repetitions. 106
Example o 115
Workflow characteristics (— indicate task dependencies). 116

Experiment 2: SimuBloch’s makespan, average wait time and slowdown. . . . 120

0 N A WD —

List of Algorithms

One iteration of the healing process. 71
Site misconfigured: replication process foronefile. 78
Main loop for activity blocked control 85
Replication process foronetask. 91
Main loop for granularity control L oo 99
Task grouping oL 101
Main loop for fairness control oL 111

Task re-prioritization L. 114

18

Introduction

Introduction

Distributed computing infrastructures (DCI) such as grids and clouds are becoming daily in-
struments of scientific research. As collections of independent computers linked by a network
presented to the users as a single coherent system, they enable easy collaboration among orga-
nizations, enhanced reliability and availability, and high performance computing. For instance,
in the last decade, the European Grid Infrastructure (EGI') and the Extreme Science and Engi-
neering Discovery Environment (XSEDE?) demonstrated their ability to support heavy scien-
tific computations with a high throughput [Gagliardi et al., 2005, Romanus et al., 2012].

Computational simulation is commonly used by researchers, and it usually involves long
simulation times ranging from a few hours to years. A definition of computational simulation
can be found in [fis, 2013]:

A computational simulation is the discipline of designing a model of an actual or
theoretical physical system, executing the model on a computer, and analyzing the
execution output. Simulation embodies the principle of “learning by doing” — to
learn about the system we must first build a model of some sort and then operate
the model.

For instance, medical imaging research increasingly relies on simulation for studying im-
age analysis, treatment planing or instrumentation prototyping, and simulation codes gener-
ally need specific computing infrastructures to produce realistic results [Wang et al., 2012b,
Grevillot et al., 2012, Leporq et al., 2013].

Although distributed computing infrastructures help support the computing load and store
the generated data, using them should not become an additional burden to simulation users.
Therefore, high-level interfaces should allow their transparent exploitation, together with high
performance.

Science gateways are emerging as user-level platforms to facilitate the access to distributed
infrastructures. Their high-level interface allows scientists to transparently run their analyses
on large sets of computing resources. They combine a set of authentication, data transfer, and
workload management tools to deliver computing power as transparently as possible. While

Thttp://www.egi.eu
Zhttp://www.xsede.org

http://www.egi.eu
http://www.xsede.org

20 Introduction

these platforms provide important amounts of resources, their large scale and the number of
middleware systems involved lead to many errors and faults, such as application crashes, hard-
ware faults, network partitions, and unplanned resource downtime [Zhang et al., 2004]. Easy-
to-use interfaces provided by these gateways exacerbate the need for properly solving opera-
tional incidents encountered on DCIs since end users expect high reliability and performance
with no extra monitoring or parametrization from their side. In practice, science gateways are
often backed by substantial support staff who monitors running experiments by performing
simple yet crucial actions such as rescheduling tasks, restarting services, killing misbehaving
runs or replicating data files to reliable storage facilities. Fair quality of service (QoS) can then

be delivered, yet with important human intervention.

Application optimization in such platforms is complex. Science gateways have no a-priori
model of the execution time of their applications because (i) task costs depend on input data
with no explicit model, and (if) characteristics of the available resources, in particular network
and RAM, depend on background load. Modeling application execution time in these condi-
tions requires cumbersome experiments which cannot be conducted for every new application
in the platform. As a consequence, such platforms operate in non-clairvoyant conditions, where
little is known about executions before they actually happen. Such platforms also run in online
conditions, i.e. users may launch or cancel applications at any time and resources may appear

or disappear at any time too.

A science gateway is considered here as a platform where users can process their own data
with predefined applications workflows. Workflows are compositions of activities defined inde-
pendently from the processed data and that only consist of a program description. At runtime,
activities receive data and spawn invocations from their input parameter sets. Invocations are
assumed independent from each other (bag of tasks) and executed on the DCI as single-core
tasks which can be resubmitted in case of failures. This model fits several existing gateways
such as e-bioinfra [Shahand et al., 2012], WS-PGRADE/gUSE [Kacsuk et al., 2012], and the
Virtual Imaging Platform [Ferreira da Silva et al., 2011, Glatard et al., 2013]. We also consider
that files involved in workflow executions are accessed through a single file catalog but that stor-
age is distributed. Files may be replicated to improve availability and reduce load on servers.

The gateway may take decisions on file replication, resource provisioning, and task schedul-
ing on behalf of the user. Performance optimization is a target but the main point is to ensure
that correctly-defined executions complete, that performance is acceptable, and that misbehav-
ing runs (e.g. failures coming from user errors or unrecoverable infrastructure downtimes) are

quickly detected and stopped before they consume too many resources.

An autonomic manager can be described as a so-called MAPE-K
loop [Kephart and Chess, 2003] which consists of monitoring (M), analysis (A), plan-
ning (P), execution (E), and knowledge (K). Self-healing techniques, generally implemented

as MAPE-K loops, provide an interesting framework to cope with online non-clairvoyant

Introduction 21

problems. They address non-clairvoyance by using a-priori knowledge about the platform
(e.g. extracted from traces), detailed monitoring, and analysis of its current behavior. They
can also cope with online problems by periodical monitoring updates. Our ultimate goal is to
reach a general model of such a scientific gateway that could autonomously detect and handle
operational incidents, and control the behavior of non-clairvoyant, online platforms to limit
human intervention required for their operation.

This manuscript is organized in two parts. Part I (Chapters 2 and 3) addresses the design of
a science-gateway and its components, as well as issues and limitations related to the execution
infrastructure. We also introduce a workload archive that provides fine-grained information
about application executions. Part II (Chapters 4, 5, 6, and 7) addresses the development of
automated methods to handle operational incidents in workflow executions. We first introduce
our self-healing process for autonomous detection and handling of these operational incidents,
and then we instantiate the healing process to late task executions and task granularity incidents,

and unfairness among workflow executions incident.

Chapter 1. Chapter 1 presents the state of the art of distributed computing infrastructures and
self-healing of workflow executions. As in this manuscript, it is organized in two parts. In the
first part we present an overview of science-gateway components from the infrastructure level
up to the interface, and in the second part we highlight strategies and mechanisms to handle

operational issues at different component levels of a science-gateway.

Chapter 2. This chapter introduces the architecture of the Virtual Imaging Platform (VIP),
a platform to support the execution of workflow applications on distributed computing in-
frastructures. A complete overview is presented, describing the tools and strategies used
to exploit computing and storage resources. The system relies on the MOTEUR en-
gine for workflow execution and on the DIRAC pilot-job system for workload manage-
ment. The platform architecture and main functionalities were published as a conference pa-
per [Ferreira da Silva et al., 2011], and a journal article [Glatard et al., 2013]. VIP have sup-
ported several research studies, such as [Rojas Balderrama et al., 2011, Forestier et al., 2011,
Marion et al., 2011, Wang et al., 2012a, Camarasu-Pop et al., 2013, Rogers et al., 2013], and
have been referenced in the research community as in [Shahand et al., 2012, Caan et al., 2012,
Balderrama et al., 2012, De Craene et al., 2013, Prakosa et al., 2013].

Chapter 3. In this chapter, we describe a workload archive acquired at the science-gateway
level, and we show its added value, compared to an archive acquired at the infrastructure level,
on several case studies related to user accounting, pilot jobs, fine-grained task analysis, bag
of tasks, and workflows. The science-gateway workload archive provides fundamental fine-
grained information for the development of our self-healing methods. Results of this work
were published in the CoreGRID/ERCIM workshop [Ferreira da Silva and Glatard, 2013].

22 Introduction

Chapter 4. This chapter presents a self-healing process for workflow executions. The process
quantifies incident degrees from metrics that can be computed online. These metrics make little
assumptions on the application or resource characteristics. From their degree, incidents are
classified in levels and associated to sets of healing actions. The healing process is parametrized
on real application traces acquired in production on the European Grid Infrastructure (EGI). We
also present a first example of this process on 7 basic incidents related to task errors. The self-
healing process was presented in the CCGrid conference [Ferreira da Silva et al., 2012], and

thereafter published as a journal article [Ferreira da Silva et al., 2013b].

Chapter 5. In this chapter, we propose a new algorithm to handle the long-tail effect and
to control task replication. The long-tail effect is characterized by executions on slow ma-
chines, poor network connections or communication issues, which lead to substantial speed-
up reductions. The healing process presented in Chapter 4 is parametrized on real applica-
tion traces acquired in production on EGI. Results of this work were also presented in the
CCGrid conference [Ferreira da Silva et al., 2012], and thereafter published as a journal arti-
cle [Ferreira da Silva et al., 2013b].

Chapter 6. In this chapter, we propose a granularity control algorithm for platforms where
such clairvoyant and offline conditions are not realistic. Controlling the granularity of work-
flow activities executed on grids is required to reduce the impact of task queuing and data
transfer time. Most existing granularity control approaches assume extensive knowledge about
the applications and resources (e.g. task duration on each resource), and that both the work-
load and available resources do not change over time. Our method groups tasks when the
fineness degree of the application, which takes into account the ratio of shared data and the
queuing/round-trip time ratio, becomes higher than a threshold determined from execution
traces. The algorithm also de-groups task groups when new resources arrive. The applica-
tion’s behavior is constantly monitored so that the characteristics useful for the optimization
are progressively discovered. This work was recently accepted to be presented in the Euro-Par
conference [Ferreira da Silva et al., 2013a].

Chapter 7. In this chapter, we propose an algorithm to fairly allocate distributed computing
resources among workflow executions to multi-user platforms. We consider a non-clairvoyant,
online fairness problem where the platform workload, task costs and resource characteristics
are unknown and not stationary. We propose a fairness control loop which assigns task pri-
orities based on the fraction of pending work in the workflows. Workflow characteristics and
performance on the target resources are estimated progressively, as information becomes avail-
able during the execution. Our method is implemented and evaluated on 4 different applications
executed in production conditions on EGI. This work was recently accepted to be presented in

the Euro-Par conference [Ferreira da Silva et al., 2013c].

Chapter 1

State of the art: distributed computing

infrastructures and self-healing of

workflow executions

Contents
1.1 Infrastructure and software for science-gateways 24
1.1.1 Gridcomputing e 24
1.1.2 Pilotjobsystems 27
1.1.3 Scientific workflows 28
1.1.4 Science-gateways i e i e e 30
1.2 Self-healing of workflow executionsongrids 31
1.2.1 Taskresubmission 32
1.2.2 Task and file replication 32
1.23 Taskgrouping. L 33
1.2.4 Fairness among workflow executions 34
13 Conclusions. o v i i it ittt e e e e e e e e e 35

In this chapter we present an overview of
science-gateway components from the infras-
tructure level up to the interface, and then we

highlight strategies and mechanisms to handle

operational issues at different component levels
of a science-gateway. Our survey shows that
none or few studies consider the online problem
and make little assumptions on the characteris-

tics of the application or resources.

24 State of the art Chap. 1

D ans ce chapitre nous présentons un tionnelles a différents niveaux du « science-
apercu des composants des « science- gateway ». Notre étude montre que aucun ou
gateways » depuis [infrastructure jusqu’a peu d’études considerent le probleme en ligne et
Uinterface, puis nous présentons des stratégies font peu d’hypotheses sur les caractéristiques de
et des mécanismes pour gérer les échecs opéra- U’application ou de ressources.

1.1 Infrastructure and software for science-gateways

Science gateways are a domain-specific frameworks (or toolsets) which incorporates applica-
tions, data, and tools to enable running application in computing environments such as grids
and clouds. They are typically accessed via a web portal, that provides a scientific community
with end-to-end support for a particular scientific workflow. They also provide services to sup-
port, upload, search, manage and download (or share) applications and data!. In this section
we present the state of the art of science-gateways components, from the infrastructure to the
interface, for the execution of applications on grid infrastructures.

1.1.1 Grid computing

Computational grids emerged in the middle of the past decade as a paradigm for
high-throughput computing for scientific research and engineering, through the feder-
ation of heterogeneous resources distributed geographically in different administrative
domains [Foster et al., 2002]. Resource sharing is governed by virtual organizations
(VO) [Foster et al., 2001], which are a set of individuals or institutions defined around a set

of resource-sharing rules and conditions.

Infrastructure. Grid computing infrastructures are federations of cooperating resource in-
frastructure providers, working together to provide computing and storage services for research
communities. These infrastructures can be characterized into research and production infras-
tructures. Research infrastructures are designed to support computer-science experiments re-
lated to parallel, large-scale or distributed computing, and networking. Examples of such in-
frastructures are Grid’5000 [Cappello et al., 2005], Future Grid [von Laszewski et al., 2010],
and DAS-32. Production infrastructures, on the other hand, are designed to support large sci-
entific experiments. They can be classified into HPC (high-performance computing) and HTC
(high throughput computing). HPC systems focuses on tightly coupled parallel tasks, while

"http://www.hpcwales.co.uk/glossary, https://sites.google.com/site/iwsglife2012
Zhttp://www.cs.vu.nl/das3

http://www.hpcwales.co.uk/glossary
https://sites.google.com/site/iwsglife2012
http://www.cs.vu.nl/das3

1.1. Infrastructure and software for science-gateways 25

HTC focuses on the efficient execution of a large number of loosely-coupled tasks®. The main
HPC infrastructures are XSEDE (USA) and PRACE (Europe). XSEDE* (Extreme Science and
Engineering Discovery Enviroment) provides a single virtual system that scientists can use to
interactively share computing resources, data, and expertise. It provide access to some dozens
HPC resources and about 1.5 PB of storage capacity. PRACE® (Partnership for Advanced Com-
puting in Europe) provides access to high-performance computing resources to researchers and
scientists from academia and industry from around the world through a peer review process.
Its infrastructure is composed by 6 leading-edge high performance computing systems of av-
erage performance of 3 Petaflops/s each. The main HTC infrastructures are OSG, NorduGrid,
and EGI. The Open Science Grid (OSG®) provides common service and support for resource
providers and scientific institutions using a distributed fabric of high throughput computational
services. It provides access to computing resources of more than 100 computing centers in
America. The NorduGrid Collaboration’ provides a production-level grid infrastructure for
research tasks. They provide access to computing resources of 11 partners from 10 countries.
The European Grid Infrastructure (EGI®) gives European scientists access to more than 320,000
logical CPUs, 152 PB of disk space and data. It is a federation of over 350 resource centers
across more than 50 countries. EGI is the infrastructure used in this manuscript and is presented
in details in Section 2.2.5 of Chapter 2.

Middleware. Grid middleware enables users to submit tasks to store data and execute com-
putation on grid infrastructures. Task scheduling, resources management, data storage, repli-
cation, and transfers are handled by the middleware. It also enables security functions, such
as authentication and authorization. Several grid middleware were developed. We use the
taxonomy presented in [Krauter et al., 2002] to classify grid systems according to their types:
computational, data, or service grid, with centralized or decentralized scheduler. For instance,
the Globus Toolkit [Foster, 2005] enables computing power, databases, and other tools sharing
across corporate, institutional, and geographic boundaries. The toolkit includes software for
security, information infrastructure, resource management, data management, communication,
fault detection, and portability. It is packaged as a set of components that can be used either
independently or together to develop applications. Globus fits several classifications in the tax-
onomy, such as computational, data, and service grids, with a decentralized scheduler. HTCon-
dor [Thain et al., 2005] is a specialized workload management system for compute-intensive
jobs. It provides a job queueing mechanism, scheduling policy, priority scheme, resource mon-

itoring, and resource management. HT'Condor handles cluster of dedicated resources as well

3https://wiki.egi.eu/wiki/Glossary_Vl
“http://www.xsede.org
Shttp://www.prace-project.eu
Shttps://www.opensciencegrid.org
"http://www.nordugrid.org
Shttp://www.egi.eu

https://wiki.egi.eu/wiki/Glossary_V1
http://www.xsede.org
http://www.prace-project.eu
https://www.opensciencegrid.org
http://www.nordugrid.org
http://www.egi.eu

26 State of the art Chap. 1

idle desktop workstations. It falls into the category of computational grids with a centralized
scheduler. DIET (Distributed Interactive Engineering Toolbox) [Caron et al., 2002] is a hierar-
chical set of components to build network-enabled server applications in a grid environment.
As a middleware, DIET provides transparent access to a pool of computational resources, and
is designed to take into account the data location when scheduling jobs. DIET can be classified
as a computational and data grid with decentralized scheduler. ARC (used by NorduGrid) and
UNICORE are classified as computational grids with decentralized scheduler. ARC (Advanced
Resource Connector) [Ellert et al., 2007] provides a reliable implementation of the fundamental
grid services, such as information services, resource discovery and monitoring, job submission
and management, logging, brokering, data and resource management. It integrates computing
resources (commodity computing clusters managed by a batch system or standalone worksta-
tions) and storage facilities, making them available via a secure common grid layer. UNICORE
(Uniform Interface to Computing Resources) [Erwin, 2002] offers a ready-to-run grid system
including client and server software. It provides access to distributed computing and data re-
sources in a seamless and secure way. GridWay and gLite are classified as computational grids
with decentralized scheduler. The gLite’ middleware (used by EGI) provides a framework
for building applications tapping into distributed computing and storage resources across the
Internet. A gLite grid is composed by a set of resource centers running services to provide
remote access to local dedicated computational resources and central services that form the
backbone of the service grid. It is the middleware used in this manuscript and is presented in
Section 2.2.5 of Chapter 2. The GridWay metascheduler [Huedo et al., 2010] enables large-
scale, reliable, and efficient sharing of computing resources over different grid middleware,
such as Globus Toolkit or glite. Computing resources can be managed by different resource
management systems within a single organization or scattered across several administrative do-
mains. GridWay provides a single point of access to the computing resources, from in-house
systems to partner grid infrastructures and public Cloud providers. Finally, BOINC (Berke-
ley Open Infrastructure for Network Computing) [Anderson, 2004] is a platform for public-
resource distributed computing. Although it was originally designed for volunteer computing
(computer owners donate their computing resources to one or more applications), it also works
for grid computing. BOINC allows vast number of single PCs to be connected in a grid-like
system (a.k.a. desktop grid), adding up their processing power. BOINC falls in a new category
that is not listed in the taxonomy: opportunistic grids. Examples of such grids also include the
OurGrid [Cirne et al., 2006], and InteGrade [Goldchleger et al., 2004].

“http://glite.cern.ch

http://glite.cern.ch

1.1. Infrastructure and software for science-gateways 27

1.1.2 Pilot-job systems

Most of the large-scale experiments conducted on large VOs of production grids now use a
pilot-job system. Pilot jobs run special agents that fetch user tasks from the task queue, set
up their environment and steer their execution. This late binding of pilot jobs to processing
tasks prevents latencies and failure modes in resource acquisition. They also improve the re-
liability and efficiency of task execution by providing automatic load balancing, fine-grained
scheduling and failure recovery. The importance of the use of pilot jobs is detailed in Sec-
tion 2.2.4 of Chapter 2. Frameworks can be roughly classified as lightweight or heavyweight
pilot job systems. Lightweight frameworks use simple master-slave system, but lack features
to manage large communities of users, or large pools of resources. Examples of such frame-
works include DIANE, and ToPoS. In contrast, heavyweight frameworks use complex systems
that can support an entire virtual organization. Condor glideIns, SAGA BigJob, PanDA, and
DIRAC are examples of such frameworks. DIRAC (Distributed Infrastructure with Remote
Agent Control) [Tsaregorodtsev et al., 2009] is the pilot job system used in this manuscript and
is presented in Section 2.2.4 of Chapter 2.

DIANE [Korkhov et al., 2009] is a lightweight task execution control framework for paral-
lel scientific applications. ToPoS'® (A Token Pool Server for Pilot Jobs) introduces the concept
of token pools. Tokens uniquely identifies a task and can be files, parameters, numbers, etc.
Users have to create tokens and to submit pilot jobs. Pilot jobs contact the token pool server,
request for a token and execute it. The system assumes that pilot jobs have the application
executable, and tokens are the input data for them.

Condor glidelns [Thain et al., 2003] is a multi-level scheduling technique where glidelns
are submitted as user tasks via grid protocols to a remote cluster. The glidelns are config-
ured to contact a central manager controlled by the user where they can be used to execute
the user’s jobs on the remote resources. BigJob [Luckow et al., 2010] is a SAGA!'-based pi-
lot job implementation. It provides support to parallel applications (e.g. based on MPI) and
work across different distributed infrastructures. BigJob is composed by three main compo-
nents, the manager, that provides the pilot job abstraction and manages the orchestration and
scheduling of BigJobs; the agent, that represents the pilot jobs and thus, the application-level
resource manager running on the respective resource; and the advert service that is used for
communication between the manager and the agent. PanDA (Production and Distributed Anal-
ysis) [Nilsson et al., 2011, Zhao et al., 2011] is the workload management system of the AT-
LAS experiment'?, used to run managed production and user analysis jobs on the grid. Pilot
factories send jobs containing a wrapper to the grid computing sites through Condor-G. The

local batch system sends the wrapper to a worker node where it downloads and executes the

Ohttps://grid.sara.nl/wiki/index.php/Using_the_Grid/ToPoS
http://saga-project.github.io
Phttp://atlas.ch

https://grid.sara.nl/wiki/index.php/Using_the_Grid/ToPoS
http://saga-project.github.io
http://atlas.ch

28 State of the art Chap. 1

PanDA pilot code. The pilot fetches a user job, executes it, and uploads the outputs to a local

storage element.

1.1.3 Scientific workflows

Scientific workflows allow users to easily express multi-step computational tasks, for example
retrieve data from an instrument or a database, reformat the data, and run an analysis. A
scientific workflow describes the dependencies between the tasks. In most cases the workflow
is described as a directed acyclic graph (DAG), where the nodes are tasks (or group of tasks)
and the edges denote the task (or group of tasks) dependencies. Sometimes control structures

(e.g. loops, ifs) are also used to describe workflows.

Workflow description language. Scientific workflows are described as high-level abstrac-
tion languages which conceal the complexity of execution infrastructures to the user. A work-
flow language formalism is a formalism expressing the causal/temporal dependencies among
a number of tasks to execute'?. A formalism can underpin different languages. For instance,
AGWL (Abstract Grid Workflow Language) [Fahringer et al., 2005b] is a XML-based work-
flow language for composing a workflow application from atomic units of work called activ-
ities interconnected through control flow and data flow dependencies. Activities are repre-
sented by type levels, simplified abstract descriptions of functions or semantics of an activ-
ity, and deployment levels, references to executables or deployed web services. Workflows
can be modularized and invoked as sub-workflows. YAWL (Yet Another Workflow Lan-
guage) [van der Aalst and ter Hofstede, 2005] is a Petri-net based workflow language defined
according to some predefined workflow patterns'*. A YAWL model is made of tasks, conditions
and a flow relation between tasks and conditions. Each YAWL model has one start condition
and one end condition. It supports three kinds of split and three corresponding kinds of join:
AND, XOR, and OR. YAWL provides direct support for cancellation regions. If a task is within
the cancellation region of another task, it may be prevented from being started or its execution
may be terminated. Scufl (Simplifed conceptual workflow language) [Oinn et al., 2006] is a
data-flow centric language, defining a graph of data interactions between different services. Its
purpose is to present the workflows from a problem-solving oriented view, hiding the com-
plexity of the interoperation of the services. Gwendia (Grid Workflow Efficient Enactment
for Data Intensive Applications) [Montagnat et al., 2009] is a workflow language that targets
the coherent integration of: (i) a data-driven approach to achieve transparent parallelism; (if)
arrays manipulation to enable data parallel application in an expressive and compact frame-
work; (iii) conditional and loop control structures to improve expressiveness; and (iv) asyn-

chronous execution to optimize execution on a distributed infrastructure. Gwendia is the work-

Bhttp://gridworkflow.org/snips/gridworkflow/space/Workflow+Description+Languages
“nttp: //www.workflowpatterns.com

http://gridworkflow.org/snips/gridworkflow/space/Workflow+Description+Languages
http://www.workflowpatterns.com

1.1. Infrastructure and software for science-gateways 29

flow language used in this manuscript. IWIR (Interoperable Workflow Intermediate Represen-
tation) [Plankensteiner et al., 2011] is a common workflow language for use as an intermediate
exchange representation by multiple workflow systems. It has a graph-based structure, mixing
data-flows and an expressive set of sequential and parallel control structures, specified as an
XML representation.

Workflow execution engine. Workflow interpretation and execution are handled by a work-
flow engine that manages the execution of the application on the infrastructure through the mid-
dleware. We use the taxonomy presented in [Yu and Buyya, 2005] to classify workflow engines
regarding the structure of workflow they support. In general, the workflow can be represented as
a Directed Acyclic Graph (DAG), and non-DAG. For instance, Pegasus [Deelman et al., 2005]
is a framework for mapping and executing DAG workflows on distributed computational re-
sources. It takes as input an abstract workflow and converts it into an executable workflow by
mapping tasks to grid resources, transferring the task executables to those resources, discover-
ing sources for input data and adding data transfer nodes to the workflow. The final executable
workflow can be executed on local or remote resources. Pegasus can also reduce workflows
based on the data produced by previous runs in the grid. Taverna [Missier et al., 2010] is a
suite of tools used to design and execute scientific workflows. A Taverna workflow specifi-
cation is compiled into a multi-threaded object model, where processors are represented by
objects, and data transfers from output to input ports of downstream processor objects are real-
ized using local method invocations between objects. One or more activities are associated to
each processor. These activities may consist of entire sub-workflows, in addition to executable
software components. DIET manages workflows applications structured as DAG represented
by an XML document that defines the nodes and data-dependencies. DIET can work in two
modes: one in which it defines a complete scheduling of the workflow (ordering and mapping),
and one in which it defines only an ordering for the workflow execution. Mapping is then done
in the next step by the client, using a master agent to find the server where the workflow services
should be run. Kepler [Altintas et al., 2004] is a free, open-source system for designing, execut-
ing, reusing, evolving, archiving, and sharing scientific DAG workflows. In Kepler, workflow
authors use a graphical user interface to implement an analytical procedure by connecting a
series of workflow components, called Actors, through which data are processed. Actors that
may contain a hierarchy of other actors are called Composites. Parts of actors that receive To-
kens, which encapsulate single or multiple data or messages, are called Ports. Directors control
the execution of workflows, and in a typical, simple workflow, one director manages the exe-
cution of one set of actors. Parameters are settings that a user may create and configure, e.g.
to serve as arguments to an actor. Triana [Taylor et al., 2007] is a workflow-based graphical
problem solving environment and an underlying subsystem. Workflows are described as data-

flows. The underlying subsystem consists of a collection of interfaces that bind to different

30 State of the art Chap. 1

types of middleware and services, such as grid middleware and web services. The P-GRADE
Grid Portal [Farkas and Kacsuk, 2011] is a web based, service rich environment for the de-
velopment, execution and monitoring of workflows and workflow based parameter studies on
various grid platforms. Currently, P-GRADE evolved to WS-PGRADE/gUSE and is described
in the next section. Example of workflow engines that provide support to non-DAG workflow
executions include ASKALON and MOTEUR. ASKALON [Fahringer et al., 2005a] provides
a suite of middleware services that support the execution of scientific workflows on the grid.
Workflow specifications are converted into executable forms, mapped to grid resources, and
executed. Workflow executions consist of coordinating control flow constructs and resolving
data flow dependencies specified by the application developer. ASKALON also manages grid
resources; it provides grid resource discovery, advanced reservation and virtual organization-
wide authorization along with a dynamic registration framework for the grid activities. MO-
TEUR [Glatard et al., 2008, Rojas Balderrama et al., 2010] is a workflow engine enabling both
the simple description of complex and large-scale applications, and the efficient execution on
distributed computing infrastructures. It is the workflow engine used in this manuscript and is
described in Section 2.2.3 of Chapter 2.

1.1.4 Science-gateways

Some software-as-a-service platforms, commonly called scientific gateways, integrate applica-
tion software with access to computing and storage resources via web portals or desktop appli-
cations. Science-gateways are used in different scientific domains such as multi-disciplinary,
climate, and medical imaging. Examples of multi-disciplinary platforms include the GISELA
portal and the WS-PGRADE/gUSE framework. The CCSM portal is an example of a cli-
mate gateway. Science-gateways used for medical imaging include the e-bioinfra portal,
the neuGRID project, and the Virtual Imaging Platform (VIP). In the remainder of this sec-
tion we present the main characteristics of such gateways. VIP [Ferreira da Silva et al., 2011,
Glatard et al., 2013] is the gateway used in this manuscript and is presented in Chapter 2.

The GISELA portal [Barbera et al., 2011] is a multi-disciplinary science-gateway for re-
search communities in Latin America. Authentication is based on identity federations through
the Grid IDentity Pool (GrIDP'5). Users are mapped to a robot certificate used for all grid
authentications. Applications have no formal description; instead, customized web pages are
available for each predefined application. Tasks are directly submitted to glite and executed on
the prod.vo.eu-eela.eu VO of EGIL. Science-gateways such as EUMEDGrid'® and DECIDE!’
are built with a similar model.

WS-PGRADE/gUSE [Kacsuk, 2011, Kacsuk et al., 2012] is a gateway framework that pro-

Bhttp://gridp.garr.it
http://applications.eumedgrid.eu
Thttp://applications.eu-decide.eu

http://gridp.garr.it
http://applications.eumedgrid.eu
http://applications.eu-decide.eu

1.2. Self-healing of workflow executions on grids 31

vides a generic purpose, workflow-oriented graphical user interface to create and run workflows
on various infrastructures including clusters, grids, desktop grids and clouds. Applications are
described as workflows using its own XML-based workflow language. Authentication is based
on login and password (or identity federations) and mapped to a robot certificate when execut-
ing in grids, desktop grids, and clouds; and is based on SSH keys for the cluster case.

The CCSM portal (Community Climate System Modeling) [Basumallik et al., 2007] is a
coupled climate modeling framework for simulating the earth’s climate system. Authentication
is based on login and password. Predefined applications are ported as scripts to run on super-
computing clusters of the XSEDE infrastructure. Files are transferred through a FTP client.
This architecture fits several science-gateways such as VLab'® (Virtual Laboratory for Earth

and Planetary Materials) and CIMA'® (Common Instrument Middleware Architecture).

The e-bioinfra portal [Shahand et al., 2012] is a science-gateway for medical image and
genomics analysis where users access predefined applications through a web portal interface.
Authentication is based on login and password. Users are mapped to a robot certificate used for
all grid authentications. Data management is twofold. First, files are transferred from the user’s
machine to a data server through a FTP client or the web portal; then, files are automatically
copied to grid resources. Applications are described as workflows and enacted by MOTEUR
workflow engine. Tasks are submitted to DIANE pilot job system and executed on the viemed
VO of EGI.

The neuGRID project [Frisoni et al., 2011] targets neuroimaging data sharing and analysis
using grid computing infrastructures. In neuGRID, users can start remote desktop sessions on
machines where image analysis tools and clients are pre-installed to access resources on the
vo.neugrid.eu VO of EGI. Users are authenticated by X.509 certificates imported into their
web browsers. An applet is available to create proxies directly from the browser keystore and
upload them to a MyProxy?’ server. All the subsequent grid operations are done with the user

proxy.

1.2 Self-healing of workflow executions on grids

The second part of this thesis presents our self-healing mechanism and its application on sev-
eral operational incidents. In this section, we present the state of the art regarding strategies to
address these incidents: (i) task resubmission (Chapter 4), (ii) task and file replication (Chap-
ters 4 and 5), (iii) task grouping (Chapter 6), and (iv) fairness among workflow executions
(Chapter 7).

Bhttp://www.vlab.msi.umn.edu/
Yhttp://cimaportal.indiana.edu:8080/gridsphere/gridsphere
http://grid.ncsa.illinois.edu/myproxy

http://www.vlab.msi.umn.edu/
http://cimaportal.indiana.edu:8080/gridsphere/gridsphere
http://grid.ncsa.illinois.edu/myproxy

32 State of the art Chap. 1

1.2.1 Task resubmission

Task resubmission is one of the most common technique for handling failures. Several
scheduling strategies can be used when resubmitting a task. The most naive approach is
to randomly select a resource, assuming that the probability to drop in the same prob-
lematic resource is minimal. More complex strategies include resource blacklisting or re-
source selection based on successful task completion rates. In particular, task resubmis-
sion has been widely used for the execution of scientific workflows on grids. For instance,
in [Wieczorek et al., 2008], the authors present a taxonomy of the multi-criteria grid workflow
scheduling problem where task resubmission is considered for the problem of lost tasks due
to full queues. In [Kandaswamy et al., 2008, Zhang et al., 2009, Montagnat et al., 2010], failed
tasks are resubmitted to increase the probability of have a successful execution in another com-
puting resource, while in [Pandey et al., 2009], they are resubmitted to resources that do not
have failure history for those tasks. [Plankensteiner et al., 2009] proposes an algorithm based
on the impact of task resubmission to decide whether to resubmit a task or replicate it. Their
approach reduces resource waste compared to conservative task replication and resubmission

techniques.

1.2.2 Task and file replication

Task replication, a.k.a. redundant requests is commonly used to address non-clairvoyant prob-
lems [Cirne et al., 2007], but it should be used sparingly, to avoid overloading the middle-
ware and degrading fairness among users [Casanova, 2006]. For instance, [Litke et al., 2007]
propose a task replication strategy to handle failures in mobile grid environments. Their
approach is based on the Weibull distribution to estimate the number of replicas to guar-
antee a specific fault-tolerance level. In [Ramakrishnan et al., 2009], task replication is en-
forced as fault-tolerant mechanism to increase the probability to complete a task successfully.
Recently, [Ben-Yehuda et al., 2012] proposed a framework for dynamic selection of Pareto-
efficient scheduling strategy, where tasks are replicated only in the tail phase when task com-
pletion rate is low. All the proposed approaches make strong assumptions on task and resource
characteristics, such as the expected duration and resource performance.

An important aspect to be evaluated when replicating task is the resource waste, a.k.a.
the cost of task replication. Cirne et al. [Cirne et al., 2007] evaluate the waste of resources
by measuring the percentage of wasted cycles among all the cycles required to execute the
application. In this manuscript, we also consider the cost of task replication as detailed in
Section 5.2.2 of Chapter 5.

File replication strategies also often assume clairvoyance on the size of produced data,
file access pattern and infrastructure parameters [Bell et al., 2003, Elghirani et al., 2008].

In practice, production systems mostly remain limited to manual replication strate-

1.2. Self-healing of workflow executions on grids 33

gies [Rehn et al., 2006]. Ma et al. [Ma et al., 2013] proposed a taxonomy of files and re-
sources models, optimization criterions, replication processes, and replication validation meth-

ods. They reviewed and classified 30 replication method studies according to these taxonomies.

1.2.3 Task grouping

The low performance of fine-grained tasks is a common problem in widely distributed plat-
forms where the scheduling overhead and queuing times are high, such as Grid and Cloud
systems. Several works have addressed the control of task granularity of bag of tasks. For in-
stance, Muthuvelu et al. [Muthuvelu et al., 2005] proposed an algorithm to group bag of tasks
based on their granularity size—defined as the processing time of the task on the resource.
Resources are ordered by their decreasing values of capacity (in MIPS) and tasks are grouped
up to the resource capacity. This process continues until all tasks are grouped and assigned
to resources. Then, Ng et al. [Ng et al., 2006] and Ang et al. [Ang et al., 2009] extended the
work of Muthuvelu et al. by introducing bandwidth in the scheduling framework to enhance
the performance of task scheduling. Resources are sorted in descending order of bandwidth,
then assigned to grouped tasks downward ordered by processing requirement length. The size
of a grouped task is determined from the task cost in millions instructions (MI).

Later, Muthuvelu et al. [Muthuvelu et al., 2008] extended [Muthuvelu et al., 2005] to de-
termine task granularity based on QoS requirements, task file size, estimated task CPU time,
and resource constraints. Meanwhile, Liu & Liao [Liu and Liao, 2009] proposed an adaptive
fine-grained job scheduling algorithm (AFJS) to group lightweight tasks according to process-
ing capacity (in MIPS) and bandwidth (in Mb/s) of the current available resources. Tasks
are sorted in descending order of MI, then clustered by a greedy algorithm. To accommo-
date with resource dynamicity, the grouping algorithm integrates monitoring information about
the current availability and capability of resources. Afterwards, Soni et al. [Soni et al., 2010]
proposed an algorithm to group lightweight tasks into coarse-grained tasks (GBJS) based
on processing capability, bandwidth, and memory-size of the available resources. Tasks are
sorted into ascending order of required computational power, then, selected in first-come, first-
served (FCFS) order to be grouped according to the capability of the resources. Zomaya and
Chan [Zomaya and Chan, 2004] studied limitations and ideal control parameters of task clus-
tering by using genetic algorithm. Their algorithm performs task selection based on the earliest
task start time and task communication costs; it converges to an optimal solution of the number
of clusters and tasks per cluster.

Although the reviewed works significantly reduce communication and processing time,
neither of them are non-clairvoyant and online at the same time. Recently, Muthuvelu et
al. [Muthuvelu et al., 2010, Muthuvelu et al., 2013] proposed an online scheduling algorithm
to determine the task granularity of compute-intensive bag-of-tasks applications. The granu-

larity optimization is based on task processing requirements, resource-network utilisation con-

34 State of the art Chap. 1

straint (maximum time a scheduler waits for data transfers), and users QoS requirements (user’s
budget and application deadline). Submitted tasks are categorised according to their file sizes,
estimated CPU times, and estimated output file sizes, and arranged in a tree structure. The
scheduler selects a few tasks from these categories to perform resource benchmarking. Tasks
are grouped according to predefined objective functions of task granularity, and submitted to re-
sources. The process restarts upon task arrival. In a collaborative work [Chen et al., 2013], we
present three balancing methods to address the load balance problem when clustering workflow
tasks. We defined three imbalance metrics to quantitative measure workflow characteristics
based on task runtime variation (HRV), task impact factor (HIFV), and task distance variance
(HDV). Although these are an online approach, the solutions are still clairvoyant.

1.2.4 Fairness among workflow executions

Fairness among workflow executions has been addressed in several studies considering
the scheduling of multiple workflows, but to the best of our knowledge, no algorithm
was proposed in a non-clairvoyant and online case. For instance, Zhao and Sakellar-
iou [Zhao and Sakellariou, 2006] address fairness based on the slowdown of Directed Acyclic
Graph (DAG); they consider a clairvoyant problem where the execution time and the amount
of data transfers are known.

Similarly, N’Takpé and Suter [N’ Takpe and Suter, 2009] propose a mapping procedure to
increase fairness among parallel tasks on multi-cluster platforms; they address an offline and
clairvoyant problem where tasks are scheduled according to one of the following three char-
acteristics: critical path length, maximal exploitable task parallelism, or amount of work to
execute. Casanova et al. [Casanova et al., 2010] evaluate several scheduling online algorithms
of multiple parallel task graphs (PTGs) on a single, homogeneous cluster. Fairness is measured
through the maximum stretch (a.k.a. slowdown) defined by the ratio between the PTG execu-
tion time on a dedicated cluster, and the PTG execution time in the presence of competition
with other PTGs.

Hsu et al. [Hsu et al., 2011] propose an online HEFT-like algorithm to schedule multiple
workflows; they address a clairvoyant problem where tasks are ranked based on the length of
their critical path, and tasks are mapped to the resources with the earliest finish time. Sommer-
feld and Richter [Sommerfeld and Richter, 2011] present a two-tier HEFT-based grid work-
flow scheduler with predictions of input-queue waiting times and task execution times; fairness
among workflow tasks is addressed by preventing HEFT to assign the highest ranks to the first
tasks regardless of their originating workflows.

Hirales-Carbajal et al. [Hirales-Carbajal et al., 2012] schedule multiple parallel workflows
on a grid in a non-clairvoyant but offline context, assuming dedicated resources. Their multi-
stage scheduling strategies consist of task labeling and adaptive allocation, local queue prior-

itization and site scheduling algorithm. Fairness among workflow tasks is achieved by task

1.3. Conclusions 35

labeling based on task run time estimation.

Recently, Arabnejad and Barbosa [Arabnejad and Barbosa, 2012] proposed an algorithm
addressing an online but clairvoyant problem where tasks are assigned to resources based on
their rank values; task rank is determined from the smallest remaining time among all remaining
tasks of the workflow, and from the percentage of remaining tasks. Finally, in their evaluation
of non-preemptive task scheduling, Sabin et al. [Sabin et al., 2004] assess fairness by assigning
a fair start time to each task. A fair start time of a task is defined by the start time of the task
on a complete simulation of all tasks whose queue time is lower than that one. Any task which
starts after its fair start time is considered to have been treated unfairly. Results are trace-based

simulations over a period of one month, but the study is performed in a clairvoyant context.

1.3 Conclusions

In this chapter, we presented an overview of science-gateway components from the infrastruc-
ture level up to the interface, and then we highlighted strategies and mechanisms to handle
operational issues at different component levels of a science-gateway. Usually, these strategies
and mechanisms cannot be computed during the execution of the application, i.e. they are of-
fline, or they make strong assumptions about resource and application characteristics, i.e., they
are clairvoyant.

As described in the next chapters, the Virtual Imaging Platform (VIP) is designed to easily
integrate autonomic methods, which detect and handle failures online with little assumptions
on the application or resource characteristics. MOTEUR was selected as the workflow engine
because of its ability to handle complex workflows (support to control structures) described
with the GWENDIA language. The choice for DIRAC is because it provides a complete so-
lution for managing distributed computing resources, and mainly due to the support provided
by the development team. EGI is the largest grid infrastructure in Europe, which provides a
significant amount of computing resources for the execution of scientific applications.

In the following chapters of this manuscript, we introduce VIP in details, and then we
present the self-healing process, based on the MAPE-K loop, that quantifies incident degrees of
workflow executions from metrics measuring the long-tail effect, task granularity, and fairness
among workflow executions. Our approach differs from the ones presented in this chapter
because our metrics are simple enough to be computed online, and little assumptions are made
on the characteristics of the application or resources, i.e. they are non-clairvoyant. Moreover,
our healing process is parametrized on real application traces acquired in production on the
European Grid Infrastructure (EGI), and it is implemented and experimental evaluated in a
production science-gateway (VIP).

36

State of the art

Chap. 1

Part I

A SCIENCE-GATEWAY FOR WORKFLOW EXECUTIONS

ON GRIDS

Chapter 2

A science-gateway for

workflow executions on grids

Contents
2.1 Introductionttt ittt ittt eeneeeean 40
2.2 VIP architecture for workflow execution. 41
2.2.1 Interface 41
222 Datamanagement.t 43
223 Workflowengine 44
2.24 Workload management system 45
2.25 Infrastructure 47
2.2.6 Workflow execution 49
23 Platformusage v . v v i it e e e e e e s e e e e e 49
2.4 Challenges and limitations, 50
25 Conclusionttt e e e e e e 52

his chapter introduces the architecture of
T the Virtual Imaging Platform (VIP), a plat-
form accessible at http:/vip.creatis.insa-lyon.fr
to support the execution of workflow applica-
tions on distributed computing infrastructures. A
complete overview is presented, describing the

tools and strategies used to exploit computing

and storage resources. The system relies on the
MOTEUR engine for workflow execution and on
the DIRAC pilot-job system for workload man-
agement. The platform currently has 441 regis-
tered users who consumed 379 years of CPU time
since January 201 1. This level of activity demon-
strates VIP usability, availability and reliability.

40 A science-gateway for workflow executions on grids Chap. 2

C e chapitre présente [’architecture de la teur d’exécution de workflow MOTEUR et le sys-

plate-forme VIP, une plate-forme acces- teme de tdches pilotes DIRAC pour la gestion
sible depuis http:/vip.creatis.insa-lyon.fr pour des calculs. La plate-forme compte actuelle-
Uexécution de workflows sur des ressources ment 441 utilisateurs enregistrés qui ont consom-
de calcul distribuées. Un apercu complet est més 379 années de temps de CPU depuis Janvier
présenté, décrivant les outils et les stratégies 2011. Ce niveau d’activité démontre la facilité
utilisées pour exploiter les ressources de cal- d’utilisation, la disponibilité et la fiabilité de la
cul et de stockage. Le systeme utilise le mo- plate-forme VIP.

2.1 Introduction

Grid computing infrastructures are becoming daily instruments of scientific research, in partic-
ular through scientific gateways [Gesing and van Hemert, 2011] developed to allow scientists
to transparently run their analyses on large sets of computing resources. Quoting the definition
of science-gateways on XSEDE': “A science-gateway is a community-developed set of tools,
applications, and data that are integrated via a graphical interface, that is further customized to
meet the needs of a specific community”. This intersects the definition of software as a service
(SaaS). SaaS is a software delivery model in which software is integrated and hosted by the
SaaS provider and which users access over the internet, usually through a web portal. A sci-
entific gateway is considered here as a software as a service platform where users can process
their own data with predefined applications.

This chapter describes the science-gateway designed and developed in this thesis: the Vir-
tual Imaging Platform (VIP) [Ferreira da Silva et al., 2011, Glatard et al., 2013]. VIP is an
openly-accessible platform for workflow executions on a production grid. In VIP, users au-
thenticate to a web portal with login and password, and they are then mapped to X.509 robot
credentials. From the portal, users transfer data and launch applications workflows to be ex-
ecuted on the grid. Workflows are compositions of activities defined independently from the
processed data and that only consist of a program description and requirements. At runtime,
activities receive data and spawn invocations from their input parameter sets. Invocations are
independent from each other (bag of tasks) and executed on the computing resource as single-
core tasks which can be resubmitted in case of failures. Thanks to a modular architecture, the
platform can be easily extended to provide other features, such as tools that facilitate the sharing
of object models for medical simulation [Forestier et al., 2011] and facilitate simulator integra-
tion [Marion et al., 2011]. VIP applications are executed on the biomed virtual organization
(VO) of the European Grid Infrastructure (EGI).

The chapter is organized as follows. In Section 2.2, we show methods and techniques

Thttps://www.xsede.org/gateways-overview

https://www.xsede.org/gateways-overview

2.2. VIP architecture for workflow execution 41

employed to support workflow execution in VIP: Section 2.2.1 describes the web interface,
Section 2.2.2 depicts the process of file transfers between user machines and the grid, Sec-
tion 2.2.3 introduces the workflow engine, Section 2.2.4 presents the workload management
system, Section 2.2.5 describes the execution infrastructure, and Section 2.2.6 summarizes the
workflow execution process. Usage statistics are presented in Section 2.3, and challenges and

limitations of the platform are presented in Section 2.4. Section 2.5 concludes the chapter.

2.2 VIP architecture for workflow execution

Figure 2.1 shows the overall VIP architecture for workflow execution. It is composed of (7)
a web portal which interfaces users to applications described as workflows, (ii) a data man-
agement tool to handle transfer operations between users machines and the grid storage, (iii) a
workflow engine to process user inputs and spawn computational tasks, (iv) a workload man-
agement system for resource provisioning and task scheduling, and (v) an execution infras-
tructure. This section describes each component of the architecture in details. In the context
of the VIP project?, we fully developed the web portal interface (Section 2.2.1) and the data
management tool (Section 2.2.2). The workflow engine and service wrapper (Section 2.2.3),
the workload management system (Section 2.2.4), and the infrastructure (Section 2.2.5) are

software developed by partners with which we contribute.

2.2.1 Interface

In VIP web portal, authentication is done with login and password. Users are mapped
to a regular X.509 robot certificate used for all grid authentications. In science-gateways,
robot certificates make user authentication easier, in particular for those who are not familiar
with personal digital certificates and the technical aspects of the Grid Security Infrastructure
(GSI) [Barbera et al., 2009]. Robot certificates are used to perform automated tasks on grids
on behalf of users. They identify a service and are bounded to a person or institution.
Although robot certificates enable transparent access to computational resources, they raise
security challenges to science-gateways: users are mapped to a unique certificate preventing
user authentication at infrastructure level. Therefore, the platform should keep track of all user
operations, in particular file transfers and application executions. VIP adopts an open access
policy where accounts are created based on valid email addresses only. New accounts are
mapped to a Beginner level where users can execute one application at a time, and cannot write
in shared folders. Advanced users have extended rights, but they must briefly describe their
activities, and have a grid certificate registered in a virtual organization. To avoid technical

problems, the certificate is not used to log in to the portal but only for administrators to check

2ANR-09-COSI-03

42 A science-gateway for workflow executions on grids Chap. 2

Virtual Imaging
Platform - VIP

\ Data Management))

= %Il‘l/‘ur

Workflow Engme‘

Job Generation)

-
L
Job Scheduler

e
“ e &D eci

Figure 2.1: VIP architecture for workflow execution.”

* Figure courtesy of William A. Romero R.

user identity. Users are organized in groups defining access rights to applications and data.
Applications are organized in classes which are associated to users groups. Groups can have
private or public access. Public groups can be joined by anyone but access to private groups is
restricted. Figure 2.2 shows the user< group<sclass«sapplication association.

User N N Group
-level -isPublic
*
*
Application . N Class

Figure 2.2: Association among users, groups, classes and applications.

Figure 2.3 (top) shows a view of the home page once logged into the platform. On the left
side, applications are listed by class. Only classes associated to user groups are displayed. To
launch an execution, a user selects an application, fills its input parameters (including files)
and clicks the launch button. A timeline, on the right side, allows application monitoring.
From the monitoring panel (Figure 2.3—bottom) users can follow application evolution, monitor
performance, and retrieve output data once the execution is finished.

The web portal interface enables users to focus on their domain-specific problem. It is

achieved by providing transparent access to computing and storage resources, i.e., users have

2.2. VIP architecture for workflow execution 43

VP9 | & Ratee Sk (Adminstrae) v | @ © Exgenancng potans)
£ Homs

General % Simulations Timeline

X oy Y T ——
B A | (V) simusoch 5P.oRE moceiv03
— 1 ~ 1211212012 15:24 - (Rafael Siva)
oy Cocumenaren Gatey Voass Srumedy Smumesos
/7 Spin Echa Inversion Recovery - T1 weighted

) S RSt e
St s o et

Pe o — - - - | Spolld Gradient Echo - Tistar wighted
& @ 'g‘ £) Simusioch §P.GRE model 0.3
A 2 c-% = 12122012 1521 - Ratoe Stva)
Uses Groups ez Type Apicaiors Classes Operaons
Spoled Gradiant Echo - T2str weighted
") SimyBioch $p.GRE mocel 0.3

129272012 14:48 - (Trtan Glatare)
Gatolab

~Spollod Gradient Echo - T1 wei
=) SimuBloch $P-GRE mosel 0.3

- - - NN 1448 G

Montor GotoLab Gotelab 029 GotoLab 035 fox ‘Spoliod Gradient Echo - proton dansity
: Bioch SP-GRE magel 0.3

121212012 1447 - (Tristan Glatare)

Bloinformatics

i

80TH0 1

Gartagraphy

A & i

~ (5] Fio Transtor

VPWS | & Rafael Siva (Administraor) v | @) © Experencing prodlems?
4} Home | (5] Spoiled Gradient Echa - T1 weighted [

E s model
L —

Irput Data OupuDaa
= pus 4| ®oms
= % resut drocry
NpMuantal roupResuls
= % Mosel
NIV (roup Ml 135614235 6824-BrairWeb Nomal-wtns T1.T2.PD-mage.2p
2 % Tasstomaion
000000
a%m
w0
SO

e

s00
2T

[simutaton Logs

Ouipus Fie Eror Fie

Figure 2.3: VIP screenshots: home page with applications (top) and application execution

monitoring (bottom).

no information about resources, and no control on scheduling. This approach also reduces the
probability of users errors. However, resource management issues should be handled by the
science-gateway. Moreover, the problem is online: users may launch new workflows or cancel
existing ones at any time. The problem is also non-clairvoyant: a model of user behavior or
workload prediction is extremely cumbersome.

2.2.2 Data management

The GRId Data management Agent (GRIDA)? enables file transfer between local user machines
and grid storage. The upload process consists in (i) uploading the file from the local machine
to the portal and (i7) transferring the file to the grid through an asynchronous pool of transfers
processed sequentially, in first-come, first-served (FCFS) order. Download is performed simi-
larly, in the opposite direction. Figure 2.4 illustrates this process. Downloaded data are kept on

the platform for 2 months, until the operation is removed by the user, or until the platform has

Shttp://vip.creatis.insa-1lyon.fr:9002/projects/vletagent

http://vip.creatis.insa-lyon.fr:9002/projects/vletagent

44 A science-gateway for workflow executions on grids Chap. 2

less than 5% of disk space left.

User Machine VIP Server Grid Storage

f> Rl ==

User uploads file
to VIP Server file to the! gr|d

e —

[:_;h % (oo

I /J-_\J
' User downloads GRIDA Downloads =
' the file file to VVIP Server 3
4 { — -
ni:<)J ni:d
L. ! 2w

Figure 2.4: File uploading and downloading process in VIP.

This two-step process avoids connectivity issues between user machines and distributed grid
hosts. A transfer pool manages the load of concurrent transfers performed by the server to avoid
network clogging on the portal machine. GRIDA also replicates files to ensure availability, and
caches a local copy of them.

An optimized file browser is available to interact with the transfer service. It caches grid
directory browsing. File permissions are also enforced by the browser: users have a private
folder readable only by themselves, and each group has a shared folder.

2.2.3 Workflow engine

VIP integrates applications based on their workflow description, and without modifying their
code so that parallelization does not require any thorough validation step. The motivation for
using workflows is twofold. First, it provides a parallel language that enables execution on
distributed computing platforms. Second, it facilitates application management by assembling
dependencies on deployment, and by enabling automatic interface generation in the portal.

In VIP, workflows are interpreted and executed using MOTEUR workflow en-
gine [Glatard et al., 2008, Rojas Balderrama et al., 2010], which provides an asynchronous
grid-aware enactor. Workflows are described using the Gwendia (Grid Workflow Efficient En-
actment for Data Intensive Applications) workflow language [Montagnat et al., 2009].

Figure 2.5 illustrates a workflow built with MOTEUR. Triangle components denote input
data, and diamond components denote output data; arrows denote dependencies among compo-
nents. Rectangular and oval components denote activities. Rectangular activities receive data
and spawn tasks to be executed on grids, and oval activities are beanshells, a piece of Java code

to be executed locally.

2.2. VIP architecture for workflow execution 45

0 lines simulationName

4 1

QetiFLines TissusParameters ma ProbeCode tgz appendlate #robeFarameters mat
—— AN / - _—
R § Ko
SimulateRFline
- - r
N AFLine_mat QuDiriMerge KemeCode tq
— — N

T
Gt pendngfle Merge

. -
w r oa 1
put o meb server image_mat

A
result URL

Figure 2.5: Example of a MOTEUR workflow.

The MOTEUR enactor is architected as a two-level engine. At the upper level, the core
engine interprets the workflow representation, evaluates the resulting data flows and produces
invocations ready for remote execution through a generic interface. At the lower level, in-
vocations are converted into tasks targeting a specific computing infrastructure. The interface
between the core engine and the task generation is implemented by a component named GASW
(Generic Application Service Wrapper)*. GASW provides a mechanism to package an appli-
cation and its dependencies, to deploy it and to publish it. When an application wrapped with
GASW receives data, it generates tasks in the form of bash scripts wrapped in grid tasks and
submits to the workload management system. Bash scripts first test file upload, then download
the input data, launch the application command-line and finally upload the results. Statistics
information are gathered from finished executions for accounting.

GASW has a pluggable architecture. It supports three categories of plugins: (i) database,
(ii) executor and (iii) listener plugins. Database plugins specify which back-end should be used
to persist information about workflow executions. Executor plugins submit and monitor tasks
on computing infrastructures. Available executors include plugins for the Application Hosting
Environment®, gLite, DIRAC (presented in the next section), and local servers. Listener plugins
receive notifications concerning task execution such as task submission, status changes, and
task completeness. They are useful collecting feedback about executions, for instance, for the

development of healing process described in the second part of this manuscript.

2.2.4 Workload management system

The DIRAC (Distributed Infrastructure with Remote Agent Con-
trol) [Tsaregorodtsev et al., 2009] workload management system (WMS) is represented
in Figure 2.6. It implements a late binding between tasks and resources. User tasks are
submitted to a central task queue which sends pilot jobs to execution nodes at the same time.

“http://vip.creatis.insa-1lyon.fr:9002/projects/gasw
Shttp://http//wuw.realitygrid.org/AHE

http://vip.creatis.insa-lyon.fr:9002/projects/gasw
http://http//www.realitygrid.org/AHE

46 A science-gateway for workflow executions on grids Chap. 2

Pilot jobs run special agents that fetch user tasks from the task queue, set up their environment

and steer their execution. Advantages of this approach are summarized below.

Production

el Manager

P — Task h

{ | Sandbox Queue VO \

' | repository Policies)
5 i
\

DIRAC WMS Matcher
Service
Pilot Job Pilot Job Pilot Job Pilot Job
DIRAC
Site
DIRAC EGEE NDG EELA
Pilot Pilot Pilot Pilot
Director Director Director Director

Figure 2.6: DIRAC Workload Management with pilot jobs.”

* Extracted from [Tsaregorodtsev et al., 2009].

First of all, pilot jobs check their execution environment before retrieving user tasks, which
reduces the failure rate of user tasks and increases the efficiency of the WMS. Besides, pilot
jobs effectively reserve their execution node for the time slot allocated by the batch system,
which reduces considerably the load on the grid middleware—a pilot can execute more than
one task in sequence. In addition, the centralization of user task in the task queue enables
community policy enforcements while decentralized priority rules defined at the site level are
imprecise and suffer scalability problems. Finally, pilot jobs can easily incorporate computing
resources of different nature and belonging to various administrative domains. Indeed, once

running, pilot jobs behave the same regardless of the type of resources.

The relevance of using pilot jobs have been experimentally demonstrated in several works,
such as in [Camarasu-Pop et al., 2011]. In this study, the difficulty to complete an application
execution comes from recurrent errors and high latencies of the execution infrastructure. For
instance, Figure 2.7 shows the result of an experiment where an application is executed with a
pilot jobs system (DS) and without (gLite). Pilot jobs outperforms the classical job submission
system, by achieving 100% of the results and by significantly lowering the completion time.

Most of the large-scale experiments conducted on large shared infrastructures now use a
pilot job system. Currently, VIP uses DIRAC’s French national instance provided by France-

2.2. VIP architecture for workflow execution 47

500000 T T T T

400000 | 2 — — &

300000

200000 -

DS1.1-75 ---%---
DS1.2-75 ---@--- 4
DS1.3-75 ---e---
gLite.1-75 ===
R gLite.2-75 —-a---
0 5 g . ‘ ‘ ‘ , 9Lite.3-75 —-e--
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

time(s)

Figure 2.7: Application execution with (DS) and without (gLite) pilot jobs.*

Completed particles out of 450000

100000 [

* Extracted from [Camarasu-Pop et al., 2011].

Grilles®, in which the administration is shared among VIP and other communities.

2.2.5 Infrastructure

Application tasks are executed on the biomed virtual organization (VO) of the European Grid
Infrastructure (EGI). EGI is a federation of over 350 resources centers (sites) across more than
50 countries which has access to more than 320,000 logical CPUs and 152 PB of disk space.
EGI has more than 230 VOs from about 10 disciplines composed of more than 22,000 members
worldwide. The biomed VO, as of January 2013 , has access to some 90 computing sites of 22
countries, offering 190 batch queues and approximately 4 PB of disk space. Table 2.1 shows
the distribution of sites per country supporting the biomed VO.

EGI uses the glite middleware. The gLite middleware was born from the collaborative ef-
forts of more than 80 people in 12 different academic and industrial research centers as part of
the EGEE series of Projects’. A gLite grid is composed by a set of resource centers running ser-
vices to provide remote access to local dedicated computational resources and central services
that form the backbone of the service grid. The glite stack combines low level core services
with a range of higher level services. gLite grid services can be thematically grouped into 4
groups: access and security, information and monitoring, job management and data services.

Access and security services identifies users, allowing or denying access to services, on the
basis of agreed policies. Authentication is based on the public key infrastructure (PKI) X.509
technology with certification authorities as trusted third parties. The information and monitor-
ing services provide information about gLite resources and their status. Published information

6https://dirac.france—grilles.fr
"http://www.eu-egee.org

https://dirac.france-grilles.fr
http://www.eu-egee.org

48 A science-gateway for workflow executions on grids Chap. 2

Country Number of sites Number of batch queues

UK 13 50
Italy 12 30
France 12 31
Greece 9 11
Spain 5 7
Germany 5 14
Portugal 4 7
Turkey 3 3
Poland 3 4
Netherlands 3 12
Croatia 3 6
Bulgaria 3 3
FYROM 2 2
Brazil 2 3
Vietnam 1 1
Slovakia 1 1
Russia 1 2
Other (.org) 1 1
Moldova 1 1
Mexico 1 1
Cyprus 1 1
China 1 1
Table 2.1: Distribution of sites and batch queues per country in the biomed VO (January

2013).

is used to locate resources and for monitoring and accounting purposes. Job management ser-
vices handle the execution of tasks on the grid. The computing element (CE) represents a set
of computing resources (worker nodes) localized at a resource center (e.g. cluster) and is re-
sponsible for the local task management. The data services manage the location and movement
of data among the resource centers of the grid. The storage element (SE) provides a common
interface to the storage backend available at the resource center. Meta-data information of each
file in the SEs are mapped by a logical file catalog (LFC).

EGI evaluates the quality of its grid services by measuring the availability and reliability of
resources. Service availability denotes the ratio of time that a service was up and running; ser-
vice reliability is the ratio of time that a service was supposed to be up and running, excluding
scheduled downtime and maintenance. Figure 2.8 shows the measured values for availability
and reliability of EGI resource centers from May 2010 to January 2012. Although the infras-
tructure shows increasing evidence of availability and reliability, fault-tolerance mechanisms
should still be developed by science-gateways.

2.3. Platform usage 49

97.00%

Averaged Quarterly Availability/Reliability
May 2009-Apr 2010 (EGEE-1I): 91.88%/93.26%
96.00%

May 2011- Jan 2012 (EGI-InSPIRE): 94.50%/95.43%

95.00%

94.00%

93.00%

92.00%

91.00%

90.00%

Quarterly EGI Availability/Reliability (%)

89.00% |

8R.00%

8/7.00%

May-Jul 10 Aug-Oct 10 Nov 10-Jan 11 Feb-Apr 11 May-Jul 12 Aug-Oct 11 Nov 11-Jan 12
® Availability m Reliability

Figure 2.8: Resource centers availability and reliability across EGI from May 2010 to

January 2012."

*

Extracted from “Annual Report on the EGI Production Infrastructure”
(https://documents.egi.eu/public/ShowDocument?docid=1059)

2.2.6 Workflow execution

For a user, an application execution consists of select an application, upload input data, launch
a workflow, and download results (steps 1, 2 and 11 from Figure 2.9). For the platform, it con-
sists of performing a workflow execution. A workflow description and a set of input parameters
is received and processed by MOTEUR, which produces invocations; from invocations GASW
generates grid tasks, and submits to the workload management system. DIRAC deploys pilot
jobs on computing resources; pilot jobs fetch user tasks and execute them; task execution con-
sists of downloading input data, executing the application, and uploading results. Figure 2.9

summarizes this process.

2.3 Platform usage

The Virtual Imaging Platform was put in production on January 2011. To date, 441 users from
49 countries are registered in VIP, among which 62 logged in in July 2013 . Figure 2.10 (top)
shows the repartition of users per country. Since January 2012, VIP has, in average, 2,000 page
views and 150 unique visits per month among which about 16% of these visits are performed
by newcomers®. According to EGI, VIP’s robot certificate has the greatest number of registered

8Reported by Google Analytics.

50 A science-gateway for workflow executions on grids Chap. 2

)
PelfLoe Tasaeanaters ma Pty g khareten me

upload

L ="
S " st ? [E—N \ \ e\
2. User launches S) s 3. MOTEUR generates =
a simulation . invocations
o ange "ﬂ [
4. GASW generates
grid jobs
1. Input data 11. Download results

T 5

@

g
5. Jobs are submitted
to DIRAC

8. Inputs download

€«
6. Pilot jobs are
. submitted to EGI
9. Execution s
< !
¢ ‘-}gnn/\c‘ }
10. Results upload 7. Pilot jobs - -

fetch grid jobs

Figure 2.9: Workflow execution flow in VIP.

users in Europe®. Since January 2011, 11,514 workflow executions were launched through the
platform that represents in average a monthly CPU consumption about 18.95 years and a yearly
cumulative of 379 years. In August 2012, VIP started to use France-Grilles’ DIRAC national
instance. Figure 2.10 (bottom) shows VIP CPU consumption since then. This level of activity
demonstrates VIP usability, availability and reliability.

2.4 Challenges and limitations

VIP has no a-priori model of the execution time of their applications because (i) task costs
depend on input data with no explicit model, and (ii) characteristics of the available resources,
in particular network and RAM, depend on background load. Modeling application execu-
tion time in these conditions requires cumbersome experiments which cannot be conducted for
every new application in the platform. As a consequence, such science-gateways platforms
operate in non-clairvoyant conditions, where little is known about executions before they ac-
tually happen. Such platforms also run in online conditions, i.e., users may launch or cancel
applications at any time and resources may appear or disappear at any time too.

Resource heterogeneity of production grids, such as EGI, raises workflow execution is-
sues: input and output data transfers may fail because of network glitches or limited site inter-

communication; application executions may fail because of corrupted executable files, missing

9https ://wiki.egi.eu/wiki/EGI_robot_certificate_users

https://wiki.egi.eu/wiki/EGI_robot_certificate_users

2.4. Challenges and limitations 51

Others; 20%

Greece; 2%

Spain; 2%
Total: 365 users
Germany; 3%
Canada; 3%
Italy; 4%
USA; 4%
South korea;
29 Weeks from Week 31 of 2012 to Week 07 of 2013
< T T T
100
B0
L
-
£
AL
20
Al?g 2012 Sep 2012 Oct 2012 Nov 2012 Dec 2012 Jan 2012 Feb 2013
Max: 104, Average: 41 8, Current: 104
W creatis 103.6

Figure 2.10: Repartition of users per country on VIP in February 2013 (top) and VIP
consumption since August 2012 reported by France-Grilles (bottom).

dependencies, or incompatibility; application executions may slowdown because of resources
with poorer performance. Therefore, methods have to be designed to handle that. We address
this issue in Chapters 4 and 5.

In platforms where the communication overhead and queueing time are high, the perfor-
mance of short tasks may slowdown the workflow execution. Task grouping techniques (Chap-
ter 6) could be used to group tasks with shared input data to save data transfers time and
queueing time.

Performance of small workflow executions is a common issue on platforms where resources
are shared among several users and communities. Although pilot jobs are used to reduce la-
tency, tasks still have to queue from 1 minute to 1 hour. A few dedicated resources could be
used to address this problem, but this approach falls in a scheduling problem of task prioritiza-

tion studied in Chapter 7.

52 A science-gateway for workflow executions on grids Chap. 2

2.5 Conclusion

This chapter provided a complete overview of VIP architecture for workflow execution pre-
senting employed methods and techniques. Users only need a valid email address to have
access to the set of applications available through a web portal. A robot certificate operates
grid operations on behalf of the user. Applications are described as workflows and enacted
by the MOTEUR workflow engine. Resource provisioning and task scheduling is provided by
DIRAC using so-called “pilot jobs”. Tasks are executed on the biomed virtual organization of
the European Grid Infrastructure (EGI). The platform currently has 441 registered users who
consumed 379 years of CPU time since January 2011.

We also introduced issues and limitations related to the execution infrastructure and to the
adoption of robot certificates. Manual interventions can be seen as a possible solution, but it
is expensive and affordable only for small production systems. Therefore, the development of
automated methods is unavoidable to target these issues on science-gateways, such as VIP.

To develop such methods, fine-grained information about application executions is re-
quired. This level of information is not found in common workload archives obtained
at the infrastructure-level, such as the Parallel Workload Archive!?, the Grid Workload
Archive [losup et al., 2008], and the Grid Observatory [Germain-Renaud et al., 2011]. In the
next chapter we present a workload archive [Ferreira da Silva and Glatard, 2013] acquired at
science-gateway level, and we show its added value on several case studies related to user ac-
counting, pilot jobs, fine-grained task analysis, bag of tasks, and workflows. The workload
archive provides the historical information for our self-healing process for autonomous detec-

tion and handling of operational incidents in workflow execution (Chapter 4).

10%ww.cs.huji.ac.il/labs/parallel /workload/logs.html

www.cs.huji.ac.il/labs/parallel/workload/logs.html

Chapter 3

A science-gateway workload archive

Contents
30 Introductionttt ittt titneeetnneeeens 54
3.2 A Science-Gateway Workload Archive 55
33 Casestudies o v v vt ittt it i e e e e e 56
33.1 Pilotjobs 56
332 Accounting 56
333 Taskanalysis 58
334 Bagoftasks. 59
335 Workflows 60
34 Conclusionttt e e e 61

rchives of distributed workloads acquired
A at the infrastructure level reputably lack
information about users and application-level
middleware, while such fine-grained informa-
tion is fundamental for the development of self-
healing methods. Science-gateways provide con-
sistent access points to the infrastructure, and
therefore are an interesting information source to
cope with this issue. In this chapter, we describe

a workload archive acquired at the science-

gateway level, and we show its added value
on several case studies related to user account-
ing, pilot jobs, fine-grained task analysis, bag of
tasks, and workflows. Results show that science-
gateway workload archives can detect workload
wrapped in pilot jobs, improve user identifica-
tion, give information on distributions of data
transfer times, make bag-of-task detection accu-
rate, and retrieve characteristics of workflow ex-

ecutions. Some limits are also identified.

54 A science-gateway workload archive

Chap. 3

es archives de traces d’exécution acquises
L au niveau des infrastructures manquent
d’information sur les utilisateurs et les appli-
cations. Ce niveau fin d’information est fon-
damental pour le développement de méthodes
d’auto-guérison. Les « science-gateways »
fournissent des points d’acces compatibles
avec linfrastructure, et sont donc une source
d’information intéressante pour faire face a ce
probleme. Dans ce chapitre, nous décrivons
une archive de traces d’exécution acquise aupres

du science-gateway, et nous montrons sa valeur

ajoutée sur plusieurs études de cas : le suivi
de lactivité des utilisateurs, les tdches pilotes,
Uanalyse détaillée des tdches, les tdches in-
dépendentes (« bag of tasks ») et workflows.
Les résultats montrent que [’archive de traces
d’exécution peut détecter la charge de travail
encapsulé dans des tdches pilotes, améliorer
Uidentification des utilisateurs, donner des infor-
mations sur les distributions de temps de trans-
fert de données, assurer la détection précise de
tdches indépendentes, et récupérer les carac-

téristiques des exécutions de workflow. Certaines

limites sont également identifiées.

3.1 Introduction

Grid workload archives [losup et al., 2008, Iosup and Epema, 2011, Kondo et al., 2010,
Germain-Renaud et al., 2011,

on distributed

Ostermann et al., 2008] are widely wused for research

systems, to validate assumptions, to model computational activ-
ity [Christodoulopoulos et al., 2008, Medernach, 2005], and to evaluate methods in sim-
ulation or in experimental conditions. Available workload archives are acquired at the
infrastructure level, by computing sites or by central monitoring and bookkeeping services.
Scientific gateways users, such as VIP (Chapter 2), access the infrastructure through stacks of
application-level middleware such as a workflow engine, an application wrapper, a pilot-job
system, and a web portal. As a result, workload archives lack critical information about de-
pendencies among tasks, about task sub-steps, about artifacts introduced by application-level
scheduling, and about users. Methods have been proposed to recover this information. For
instance, [losup et al., 2007] detects bags of tasks as tasks submitted by a single user in a given
time interval. In other cases, information can hardly be recovered: [losup and Epema, 2011]
reports that there is currently no study of a pilot-job workload, and workflow studies such

as [Ostermann et al., 2008] are mostly limited to test runs conducted by developers.

Science-gateways, however, gathers rich information about workload patterns.
They can provide
of tasks,

archive [Ferreira da Silva and Glatard, 2013], and illustrates its added value w.r.t.

fine-grained information on user accounting, pilot jobs, bag

and workflows. This chapter describes a science-gateway workload
archives
acquired at the infrastructure level. In the second part of this manuscript, this workload archive

will be used to provide historical information for our self-healing process for autonomous

3.2. A Science-Gateway Workload Archive 55

detection and handling of operational incidents in workflow executions.

The workload archive model is presented in Section 3.2 and used in 5 case studies in Sec-
tion 3.3: Section 3.3.1 studies pilot jobs, Section 3.3.2 compares user accounting to data ac-
quired by the infrastructure, Section 3.3.3 performs fine-grained task analysis, Section 3.3.4
evaluates the accuracy of bag of task detection [losup et al., 2007] from infrastructure-level

traces, and Section 3.3.5 analyzes workflows in production. Section 3.4 concludes the chapter.

3.2 A Science-Gateway Workload Archive

Science gateways usually involve a subset or all the entities of VIP’s architecture shown on
Figure. 2.9 (Chapter 2). This science gateway model totally applies to e-bioinfra, and partly to
the P-Grade portal, the Science-Gateway framework in [Ardizzone et al., 2011], medigrid-DE,
and CBRAIN.

Our science-gateway archive model adopts the schema on Figure. 3.1. Task contains infor-
mation such as final status, exit code, timestamps of internal steps, application and workflow
activity name. Each task is associated to a Pilot Job. Workflow Execution gathers all the
activities and tasks of a workflow execution, Site connects pilots and tasks to a grid site, and
File provides the list of files associated to a task and workflow execution. In this work we
focus on Task, Workflow Execution and Pilot Job.

(__Pilotjob) 4 Task A (—_ Workflow Execution)
Lid -0)id blid
Dstatus pO- - -l [‘submission_timestamp
| | | exit_code Ufinish_timestamp
4 Dapplication_name [‘ user
| activity_name

I---0< Dsubmission_timestamp

Ufinish_ti mestamp
uneued_timestamp

File Udownload_timestamp
Dn?me b0 - <0< |_Jjexecution_timestamp
L size | Jupload_timestamp
- J

Figure 3.1: Science-gateway archive model.

The science-gateway archive is extracted from VIP. Task, Site and Workflow
Execution information are acquired from databases populated by the MOTEUR workflow
engine at runtime. File and Pilot Job information are extracted from the parsing of task
standard output and error files.

Studies presented in the following Sections are based on the workload of the VIP from
January 2011 to April 2012. It consists of 2,941 workflow executions, 112 users, 339,545 pilot
jobs, 680,988 tasks where 338,989 are completed tasks, 138,480 error tasks, 105,488 aborted
tasks, 15,576 aborted task replicas, 48,293 stalled tasks and 34,162 submitted or queued tasks;

56 A science-gateway workload archive Chap. 3

task average waiting time is about 36 minutes. Stalled tasks are tasks which lost communication
with the pilot manager, e.g. because they were killed by computing sites due to quota violation.
Tasks ran on the biomed virtual organization of the European Grid Infrastructure (EGI). Traces

used in this work are available to the community in the Grid Observatory'.

3.3 Case studies

3.3.1 Pilot jobs

As mentioned in Chapter 2, pilot jobs are increasingly used to improve scheduling and reliabil-
ity on production grids [Luckow et al., 2012, Tsaregorodtsev et al., 2009, Thain et al., 2005].
This type of workload, however, is difficult to analyze from infrastructure traces as a single
pilot can wrap several tasks, which remains unknown to the infrastructure. In our case, pilots
are discarded after 5 task executions, if the remaining walltime allowed on the site cannot be
obtained, if they are idle for more than 10 minutes, or if one of their tasks fails. Pilots can
execute any task submitted by the science gateway, regardless of the workflow execution and
user.

Figure. 3.2 shows the number of tasks and users per pilot in the archive. The figure shows
only 453,547 out of 646,826 executed tasks, i.e. 70% of the complete task set. This amount
corresponds to tasks where a standard output containing the pilot id could be retrieved. Most
pilots (83%) execute only 1 task due to walltime limits or other discards. These 83% execute
282,331 tasks, which represents 62% of the considered tasks. Workload acquired at the infras-
tructure level would usually assimilate pilot jobs to tasks. Our data shows that this hypothesis
is only true for 62% of the tasks. The distribution of users per pilots has a similar decrease:

95% of the pilots execute tasks of a single user.

3.3.2 Accounting

On a production platform like EGI, accounting data consists of the list of active users and
their number of submitted jobs, consumed CPU time, and wall-clock time. Here, we compare
data provided by the infrastructure-level accounting services of EGI? to data obtained from the
science-gateway archive.

Figure. 3.3 compares the number of users reported by EGI and the scientific gateway. It
shows a dramatic discrepancy between the two sources of information, explained by the use
of a robot certificate in the gateway. Robot certificates are regular X.509 user certificates that
are used for all grid operations performed by a science gateway, namely data transfers and

task submission. From an EGI point of view, all VIP users are accounted as a single user

Thttp://www.grid-observatory.org
Zhttp://accounting.egi.eu

http://www.grid-observatory.org
http://accounting.egi.eu

3.3. Case studies 57

282331
250000 -

200000 -
150000 -

2y
€ 100000 -
(0]
>
@ 50000 -
I 28121
11885
6721 10487
O -
| I I | |
2 3 4 5
Tasks per pilot
323214
300000 -
250000 -
200000 -
150000 -
2
& 100000 -
>
o
Q50000 -
L
15178
1079
0- 70 4
I I I I I
1 2 3 4 5

Users per pilot

Figure 3.2: Histogram of tasks per pilot (top) and users per pilot (bottom).

regardless of their real identity. EGI reports more than one user for months 12, 13, 15 and
16 due to updates of the VIP certificate. The adoption of robot certificates totally discards the
accounting of user names at the infrastructure level. Studies such as presented on Figure 17
in [Ilijasic and Saitta, 2009] or on Figure 1 in [losup and Epema, 2011], cannot be considered
reliable in this context. Robot certificates are not an exception: a survey available online’
shows that 80 of such certificates are known on EGI. By avoiding the need for users to request
personal certificates, they simplify the access to the infrastructure to a point that their very large
adoption in science gateways seems unavoidable.

Figure 3.4 compares the number of submitted jobs, consumed CPU time, and consumed
wall-clock time obtained by the EGI infrastructure and by VIP. The number of jobs reported
by EGI is almost twice as important as in VIP. This huge discrepancy is explained by the fact
that many pilot jobs do not register to the pilot system due to some technical issues, or do not
execute any task due to the absence of workload, or execute tasks for which no standard output
containing the pilot id could be retrieved. These pilots cannot be identified from the task logs.
While this highlights serious potential improvements in the pilot manager, it also reveals that

a significant fraction of the workload measured by EGI does not come from applications but

3https://wiki.egi.eu/wiki/EGI_robot_certificate_users

https://wiki.egi.eu/wiki/EGI_robot_certificate_users

58 A science-gateway workload archive Chap. 3

m-

40 -
20 VIP

OJJJJJJJJJJ‘JJJJJ

9 10 11 12 13 14 15 16
Months

Users

Figure 3.3: Number of reported EGI and VIP users.

from artifacts introduced by pilot managers. This should be taken into account when conducting
studies on application-level schedulers from workload acquired at the infrastructure level.

About 60 walltime years are missing from the science gateway archive, compared to the
infrastructure. This is due to the pilot setup time (a few minutes per pilot), and to the computing
time of lost tasks, for which no standard output containing monitoring data could be retrieved.
Tasks are lost (a.k.a stalled) in case of technical issues such as network interruption or deliberate
kill from sites due to quota violation. For instance, Table 3.1 shows the consumed CPU time
repartition among tasks of a workflow execution. Stalled tasks represent 4% of the total number
of tasks and consume about 38% of the total CPU time.

Task status ‘ Number of tasks ‘ Consumed CPU time (s)

Completed 122 55,147
Stalled 5 36,414
Error 4 4,905

Table 3.1: Consumed CPU time repartition among completed, errors, and stalled tasks of a

workflow execution.

3.3.3 Task analysis

Traces acquired at the science-gateway level provide fine-grained information about tasks,
which is usually not possible at the infrastructure level. Figure 3.5 shows the distributions
of download, upload and execution times for successfully completed tasks. Distributions show
a substantial amount of very long steps.

Error causes can also be investigated from science-gateway archives. Figure 3.6 (left)
shows the occurrence of 6 task-level errors. These error codes are application-specific
and not accessible to infrastructure level archives, see e.g. [Lingrand et al., 2010] (Table 3)
and [Kondo et al., 2010].

3.3. Case studies 59

---- VIP jobs

§5e+05— — EGl jobs
S 4e+05-
@
0 3e+05-
£
3 2e+05- -
le+05- 7 e
I ! !
5 10 15
Month
150 -
—=—- VIP CPU time
1004 — — VIP Wall-clock time
%) — EGI CPU time
8 ---- EGI Wall-clock time %
o ==

50 -

Figure 3.4: Number of submitted pilot jobs (top), and consumed CPU and wall-clock time
(bottom) by the infrastructure (EGI) and the science gateway (VIP).

A common strategy to cope with recoverable errors is to replicate tasks [Casanova, 2006],
which is usually not known to the infrastructure. Figure 3.6 (right) shows the occurrence of

task replication in the science-gateway archive.

3.3.4 Bag of tasks

In this section, we evaluate the accuracy of the method presented in [losup et al., 2007] to
detect bag of tasks (BoT). This method considers that two tasks successively submitted by a
user belong to the same BoT if the time interval between their submission times is lower or
equal to a time A. The value of A is set to 120s as described in [losup et al., 2007]. Figure 3.7
presents the impact of A on BoT sizes (a.k.a. batch sizes) for A = 10s, 30s, 60s and 120s.
Figure 3.8 presents the comparison of BoT characteristics obtained from the described
method for A = 120s and from VIP. BoTs in VIP were extracted as the tasks generated by
the same activity in a workflow execution. Thus, they can be considered as ground truth and
are named Real Non-Batch for single-task BoTs and Real Batch for others. Analogously,
we name Non-Batch and Batch BoTs determined by the method. Batch has about 90% of
its BoT sizes ranging from 2 to 10 while these batches represent about 50% of Real Batch.

This discrepancy has a direct impact on the BoT duration (makespan), inter-arrival time and

60 A science-gateway workload archive Chap. 3

0.8- | — download
---- execution

0.6- upload

CDF

[} }
1 100 10000
Time(s)

Figure 3.5: Different steps in task life.

1285
_ 1191
50000 - 1200
1000 -
40000 -
800 -

30000 -
600 -

400 - 347 322
112
3 0 6

[[1 [[
application input stalled output folder 1 2 3 4 5 +5
Error causes Replicas per task

19463

Frequency

20000 -

Number of tasks

10000 -

0-

Figure 3.6: Task error causes (left) and number of replicas per task (right).

consumed CPU time. The duration of Non-Batch are overestimated up to 400%, inter-arrival
times for both Batch and Non-Batch are underestimated by about 30% in almost all inter-
vals, and consumed CPU times are underestimated of 25% for Non-Batch and of about 20%
for Batch. This data shows that detecting bag of tasks based on infrastructure-level traces is
very inaccurate. Such inaccuracy may have important consequences on works based on such

detection, e.g. [Brasileiro et al., 2011].

3.3.5 Workflows

Few works study the characterization of grid workflow executions. In [Ostermann et al., 2008],
the authors present the characterization of 2 workloads that are mostly test runs conducted by
developers. To the best of our knowledge, there is no work on the characterization of grid
workflows in production.

Figure 3.9 presents characteristics of the workflow executions extracted from our science-
gateway archive. They could be used to build workload generators for the evaluation of schedul-
ing algorithms. Let N be the number of tasks in a workflow execution; we redefine the 3 classes
presented in [Ostermann et al., 2008] to small for N < 100, medium for 100 < N < 500 and

3.4. Conclusion 61

—
9] " —--
$4000- o T i
8 008 i T e |-
el I S Ll Ll
© 7 B P E R BN SR — 10s
%5 3000 - [e
g i3] -+ 30s
3 B . T So6- 60s
2000 - 2 -
° avg & -~ 120s
N B i N
L] min O " -—- 900s
'6 1000 - 04- I ---1800s
2 !
A - —- 3600s
1
| | | | | | | | | | | | |
1s 10s 30s 60s 120s 900s 1800s 3600s 20 40 60 80 100
A Number of tasks

Figure 3.7: Impact of parameter A on BoT sizes: minimum, maximum and average values
(left); and its distribution (right).

large for N > 500. From Figure 3.9 (top left), we observe that the workload is composed
by 52%, 31% and 17% of small, medium and large executions respectively. In Figure 3.9
(top right), 90% of small, 66% of medium and 54% of large executions have a makespan
lower than 14 hours. Figure 3.9 (bottom left) shows that speed-up increases with the size of
the workflow, which is commonly observed. Critical path lengths are mostly up to 2 levels for

small and large executions and up to 3 for medium executions (bottom right of Figure 3.9).

3.4 Conclusion

We presented a science-gateway model of workload archive containing detailed information
about users, pilot jobs, task sub-steps, bag of tasks and workflow executions. We illustrated
the added value of science-gateway workloads compared to infrastructure-level traces using
information collected by the Virtual Imaging Platform in 2011/2012, which consist of 2,941
workflow executions, 339,545 pilot jobs, 680,988 tasks and 112 users that consumed about 76
CPU years.

Several conclusions demonstrate the added-value of a science-gateway approach to work-
load archives. First, it can exactly identify tasks and users, while infrastructure-level traces
cannot identify 38% of the tasks due to their bundling in pilot jobs, and cannot properly identify
users when robot certificates are used. Infrastructure archives are also hampered by additional
workload artifacts coming from pilot-job schedulers, which can be distinguished from applica-
tion workload using science-gateway archives. More detailed information about tasks is also
available from science-gateway traces, such as distributions of download, upload and execution
times, and information about replication. Besides, the detection of bag of tasks from infrastruc-
ture traces is inaccurate, while a science-gateway contains ground truth. Finally, we reported a

few parameters on workflow executions, which could not be extracted from infrastructure-level

62

A science-gateway workload archive

Chap. 3

0.8- 0.8-
u_QB* u.067
8 8 Real Batch
- - Real Batcl
0.4- 0.4-
Real Non-Batch
02- ---- Real Batch 0.2- — Batch
— Batch ---- Non-Batch
0.0- 0.0-
I I I I I I I I I I
200 400 600 800 1000 10000 20000 30000 40000 50000
Size (number of tasks) Duration (s)
0.8- e) (e S e
08- == T pmemm=mTTT
0.6- 06
L LL
[a)] L, (@)
(@) 04- ’// ——- Real Batch O 0.4- ——- Real Batch
,«" Real Non-Batch Real Non-Batch
-
0.2- — Batch 0.2 - — Batch
1" ---- Non-Batch ---- Non-Batch
i
0.0- 7

|
2000

| |
4000 6000
Inter—Arrival Time (S)

| I
8000 10000

I I I I I
10000 15000 20000 25000 30000

5000
Consumed CPUTime (KCPUs)

Figure 3.8: CDFs of characteristics of batched and non-batched submissions: BoT sizes,

duration per BoT, inter-arrival time and consumed CPU time (A = 120s).

traces. Limits of science-gateway workloads still exist. In particular, it is very common that a
significant fraction of lost tasks do not report complete information.

Traces acquired by the Virtual Imaging Platform will be regularly made available to the
community in the Grid Observatory. We hope that other science-gateway providers could also
start publishing their traces so that computer-science studies can better investigate production
conditions. In the second part of this thesis, the science-gateway workload archive is used to
feed our self-healing algorithms with historical information. It can also be used to elaborate
benchmarks, or to simulate applications and algorithms targeting production systems.

Depending on the interest or application, more information could be extracted from the
science-gateway traces. For instance, information about file access pattern, about the number
and location of computing sites used per workflow or bag-of-task execution, and about task

resubmission is available in the archive.

63

3.4. Conclusion

1.0- 1.0-
0.8- 0.8-
W 06- L 0.6-
8 8 Il
==-smal
0.4-
0.4- -+ medium
0.2- — large
0.2- - - total
1 1 1 1 1 1 1 1
2000 4000 6000 8000 1e+03 1e+05 1e+07 1e+09
Size (number of tasks) Makespan (s)
1.0- r o irmmmmmm—m====== 1.0- T m e m
/
II
0.8- ¥ 0.8-
1
]
W 06- ! N L 06-
3] ” I 3 i
S == smal ==-smal
0.4- 0.4-
---+ medium ---- medium
0.2- — large 0.2- — large
- - total 5 - - total
0.0- ~
1 1 1 1 1 1 1 1
800 0 1 2 3 4 5
Critical path length

600

2(‘)0 4(‘)0
Speedup
Figure 3.9: Characteristics of workflow executions: number of tasks (fop left), CPU time

and makespan (fop right), speedup (bottom left) and critical path length (bottom right).

64

A science-gateway workload archive

Chap. 3

Part 11

SELF-HEALING OF WORKFLOW EXECUTIONS

ON GRIDS

Chapter 4

A self-healing process for

workflow executions on grids

Contents
41 Introduction ittt ttiteeenneeeens 68
4.2 Generalhealing Process . . . « ¢« v ¢« vt v it i et et e e 70
4.3 Ilustrationontaskerrorsttt 72
43.1 Incidentdegree 73
432 Incidentlevels 75
433 AssociationRules 76
434 ACHiONS e e e 76
435 Experiments 77
4.4 Improvements to modedetection it 79

4.5

Conclusion i i i i i i i it i ittt ettt et 81

68 A self-healing process for workflow executions on grids

Chap. 4

r | \ he management of science gateways such
as VIP requires important human interven-

tion to handle operational incidents. This chap-
ter presents a self-healing process for workflow
executions. The process quantifies incident de-
grees from metrics that can be computed online.
These metrics make little assumptions on the ap-
plication or resource characteristics. From their

degree, incidents are classified in levels and as-

The heal-

ing process is parametrized on real application

sociated to sets of healing actions.

traces acquired in production on the European
Grid Infrastructure. We present a first example
of this process on 7 basic incidents related to
task errors. Experimental results obtained in the
Virtual Imaging Platform show that the proposed
method properly detects and handles recoverable
and unrecoverable errors. The next chapters ex-

ploit this process on more complex problems.

| a gestion des « scientific gateways » né-
cessite une intervention humaine impor-

tante pour traiter les incidents opérationnels.
Ce chapitre présente un processus d’auto-
administration pour les exécutions de workflow.
Le processus quantifie le degré de gravité des in-
cidents a partir de parametres qui peuvent étre
calculés en ligne. Les métriques utilisées em-
ploient peu de caractéristiques d’application ou

de ressource. A partir de leur degré de gravité,

les incidents sont classés afin de leur appliquer
les actions de guérison appropriées. Le proces-
sus de guérison est paramétré a partir de traces
d’applications réelles acquises sur EGIl. Nous
présentons un premier exemple de ce processus
sur sept incidents. Les résultats expérimentaux
obtenus dans la plate-forme VIP montrent que
la méthode proposée détecte et gere les erreurs
récupérables et irrécupérables de maniere adap-
tée. Les chapitres suivants exploitent ce proces-

sus sur des problemes plus complexes.

4.1 Introduction

Science-gateways, such as VIP (see Chapter 2), provide access to important amounts of re-
sources transparently. However, their large scale and the number of middleware systems in-
volved lead to many system errors and faults. Easy-to-use interfaces provided by these gate-
ways exacerbate the need for properly solving operational incidents encountered on grid com-
puting infrastructures since end users expect high reliability and performance with no extra
monitoring or parametrization from their side. In practice, such services are often backed by
substantial support staff who monitors running experiments by performing simple yet crucial
actions such as rescheduling tasks, restarting services, killing misbehaving runs or replicating
data files to reliable storage facilities. Fair QoS can then be delivered, yet with important human

intervention. For instance, VIP administration demands an important amount of time and ac-

4.1. Introduction 69

curate expertise on workflow execution and grid computing. Figure 4.1 shows a diagram of all
instances involved in a workflow execution based on the VIP’s architecture (see Chapter 2). All
these instances are prone to errors from the task execution level, such as application execution

failures, or unavailability of files, up to the web portal level, such as unscheduled downtimes.

Web Portal
* *
Pilot Engine Workflow Workflow
Engine Description
*
N Workflow Data
Activity Management
* *
Pilot) ob Invocation . Activity
*
* *
* *
Computing N Task * File N
Node * *
*
*
Site Storage Replica
* *
Resource

Figure 4.1: Instances involved in a workflow execution.

Automating such operations is challenging for two reasons. First, the problem is online by
nature because no reliable user activity prediction can be assumed, and new workloads may
arrive at any time. Therefore, the considered metrics, decisions and actions have to remain
simple and to yield results while the application is still executing. Second, it is non-clairvoyant
due to the lack of information about applications and resources in production conditions. Com-
puting resources are usually dynamically provisioned from heterogeneous clusters, clouds or
desktop grids without any reliable estimate of their availability and characteristics. Models of
application execution times are hardly available either, in particular on heterogeneous comput-
ing resources. To the best of our knowledge, there is no such framework that address both
conditions, online and non-clairvoyant.

In this chapter, we propose a general healing process for workflow executions. Instances
are modeled as Fuzzy Finite State Machines (FuSM) [Malik et al., 1994] where state degrees of
membership are determined by an external healing process. Degrees of membership are com-
puted from metrics assuming that incidents have outlier performance, e.g. a site or a particular
invocation behaves differently than the others. Based on incident degrees, the healing process
identifies incident levels using thresholds determined from platform history. A specific set of
actions is then selected from association rules among incident levels.

In this manuscript, we consider seven of the instances depicted in Figure 4.1: Workflow

70 A self-healing process for workflow executions on grids Chap. 4

Activity, Activity, Invocation, Task, File, Replica, and Site. In this chapter, we il-
lustrate the healing process on seven incident cases related to input and output data transfer er-
rors, and application execution errors. These incidents involve all instances, except Workflow
Activity. In the next chapters, we instantiate the healing process to late task executions and
task granularity incidents involving the Activity instance, and unfairness among workflow
executions incident involving Workflow Activity instance.

Our general self-healing process is described in Section 4.2: we show how metrics used
to quantify incident degrees are determined, and how we characterize incident levels. In Sec-
tion 4.3 we present a first example of this process on 7 basic incidents related to task errors.
Section 4.4 shows improvements to mode detection, and Section 4.5 concludes the chapter.

4.2 General healing process

An instance is modeled as a FuSM as shown on Figure 4.2. The instance is initialized in
Initializing where it prepares the execution (e.g., invocation submission for activities).
Running is a state where no particular issue is detected; no action is taken and the instance
is assumed to behave normally. Completed (resp. Failed) is a terminal state used when the
instance successfully completes it execution (resp. the execution finishes with errors). These 4
states are crisp (not fuzzy) and exclusive. Their degree can only be O or 1 and if 1 then all other

states have a degree 0. The other states are fuzzy states corresponding to detected incidents.

Incident 1
—>
Initializing r@_ Incident 2

[Completed] [Failed]
Incident n
>

\/.\/
Figure 4.2: Fuzzy Finite State Machine (FuSM) representing a general instance.

/_/\

The healing process sets the degree of FuSM states from incident detection metrics. Then,
it determines actions to address the incidents. If no action is required then the process waits
until an event occurs (e.g., task status change) or a timeout is reached. The process is described
formally in the next paragraphs.

Let I ={x;,i = 1,...,n} be the set of possible incidents and n = (11, ...,1,) € [0, 1]" their
degrees in the FuSM. Incident x; can occur at m; different levels {x; ;, j = 1,...,m;} delimited

by thresholds values 7; = {r;;,1,...,m;}. The level of incident i is determined by j such that

4.2. General healing process 71

T;j <1 < Tijs1. A set of actions a;(j) is available to address x; ;:

a; : [1,m;] — p(A)
J e ai))
where A is the set of possible actions taken by the healing process and @(A) is the power set
of A.

In addition to the incidents themselves, incident co-occurrences are taken into account. As-
sociation rules [Agrawal et al., 1993] are used to identify relations between levels of different
incidents. Association rules to x; ; are defined as R; ; = {rZ’jV = (Xu» Xijs pZ’J.V)}. Rule rZ’jV means
that when x,, happens then x; ; also happens with confidence p;’”jv € [0, 1]. The confidence of
a rule is an estimate of probability P(x;j|x,,). For the sake of completeness, rjj € R;; and
pij = 1. We also define R = U;cq1up.je1.m Rij- The inference made by an association rule
does not necessarily imply causality. Instead, it quantifies co-occurrence between the rule’s
terms [Tan et al., 2005].

Algorithm 1 presents the algorithm used at each iteration of the healing process. Incident
degrees are determined based on metrics and incident levels j are obtained from historical data
as explained in the next section. A roulette wheel selection [De Jong, 1975] based on 5 is per-
formed to select x; ; the incident level of interest for the iteration. In a roulette wheel selection,
incident x; is selected with a probability p; proportional to its degree: p(x;) = n; f;l ni. A
potential cause x,,, for incident x; ; is then selected from another roulette wheel selection on the
association rules r}/, where x, is at level v. Rule r} is weighted i, X p;’; in this second roulette
selection. Only first-order causes are considered here but the approach could be extended to
include more recursion levels. Note that rllj participates in this selection so that a first-order

cause is not systematically chosen. Finally, actions in a,(v) are performed.

Algorithm 1 One iteration of the healing process.

input: history of 5

Output: set of actions a

wait for event or timeout

determine incident degrees n € [0, 1] based on metrics

determine incident levels j such that 7; ; < 7; < 7; j41

select incident x; by roulette wheel selection based on 7

select rule 7y, = (Xyy, Xi j» p?j) € R; ; by roulette wheel selection based on 77, X pl“]‘, where x, is at level v

a= a,(v)

PRI D R RN

perform actions in a

Table 4.1 illustrates this mechanism on an example case where only 3 incidents are consid-
ered, and Figure 4.3 shows it as a MAPE-K loop.
Incidents degrees 7; are determined by metrics identified by human operators (step 02 on

Algorithm 1). These metrics must be computable on online conditions. In addition, we con-

72 A self-healing process for workflow executions on grids Chap. 4

Step 02 and 03: incident degrees and levels are determined:

x;: incident | Degreen; | Level j

X1 0.8 2
%) 0.1 1
X3 0.4 1

Step 04: x; is selected with probability %.

‘o 21 3.1 12 .
Step 05: association rules r;’) and r,’; are considered:

1,2° 1,2
Rule Confidence
rf; X1 — X12 0.8
rf; X31 = X12 0.2
r%g X12 = X12 1

2,1
1,2

is chosen with probability jz—oixds

r 0.2x0.170.8x1 *

Step 06: actions in a,(1) are performed.

Table 4.1: Example case.

straint i7; to be in [0, 1], so that any new metric could be added provided it can be quantified
online and ranges from O to 1.

Incident degrees are quantified in discrete incident levels so that different sets of actions can
be used to address different levels of the incident. Thresholding consists in clustering platform
configurations into groups. We determine 7;, the threshold value of an incident degree x;,
from execution traces, for which different thresholding approached can be used. For instance,
we could consider that x% of the platform configurations are inappropriate while the rest are
acceptable. The choice of x, however, would be arbitrary. Instead, we inspect the modes of
the distribution of 7, to determine a threshold. Thresholds 7; are determined from visual mode
clustering. The number m; of incident levels associated to incident i is set as the number of
modes in the observed distribution of 7;. Incidents levels and thresholds are determined offline;
thus they do not create any overhead on the workflow execution. Figure 4.4 shows an example
where, for 7; > 0.6 the configuration is inappropriate, and for 7; < 0.6 the configuration is
acceptable.

4.3 Illustration on task errors

This section presents a first example of the healing process on workflow activity incidents
related to input and output data transfer errors, and application execution errors. First, we
define metrics used to determine each incident degree; then, incident levels and association
rules are defined from historical information and associated to action sets. Finally, experiments

are conducted to evaluate the healing process in production conditions. We consider seven

4.3. Illustration on task errors 73

event Incident 2
(job completlc:)nr and failures) degree n = 0.4
timeout level | level | level
1 2 3
Monitoring P

-
i
i
i
4 ~0.07
i
i
i
i = hi
1 n
H : E _h,
1 j=1
i
ols o's 1o i
\ i
\ 1
|
i
|

Set of Actions
Execution LN Roulette wheel selection
... [YR ———
Plannin)\
9) ‘L
Rule Confidence (p) pxn
Selected 291 0.8 Selected
B — oo oy <o el o [0
0.16 121 1.0 | 0.80
Roulette wheel selection Assolcialtion rules
based on association rules for incident 1

Figure 4.3: Example case showed as a MAPE-K loop.

g Acceptable Inappropriate
2
o
o
(I
A=
| | I | |]
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.4: Example of incident levels for a threshold 7; = 0.6.

incidents: input data unavailability and non-existence, output data unavailability, application
execution error, and site misconfiguration for input and output data, and application execution.

4.3.1 Incident degree

Input data unavailable. This happens when a file is registered in the file catalog but the
storage resource(s) is(are) unavailable or unreachable. The incident degree 7;, in this state is
determined from the input transfer failure rate due to data unavailability. Transfers of com-

pleted, failed, and running invocations are considered.

Input data does not exist. This happens when an incorrect data path was specified, the file
was removed by mistake or the file catalog is unavailable or unreachable. Again, the incident

degree 7;. 1s directly determined by the input transfer failure rate due to non-existent data. Non-

74 A self-healing process for workflow executions on grids Chap. 4

existent file is distinguished from file unavailability using ad-hoc parsing of standard error files.

Transfers of completed, failed, and running invocations are considered.

Site misconfigured for input data. This incident happens when computing sites of the in-
frastructure (see Section 2.2.5 in Chapter 2) have extreme input data transfer failure rate. The

incident degree n;, is measured as follows:

Mis = max(¢y, da, ..., ¢) — median(dy, ¢o, . .., @)

where ¢; denotes the input transfer failure ratio (including both input data unavailable and input
data does not exist) on site i, and k is the number of white-listed sites used by the activity. The
difference between the maximum rate and the median ensures that the incident degree has high
values only when some sites are misconfigured. This metric is correlated but not redundant
with the two previous ones. If some input data file is not available due to site-independent
issues with the storage system, then n;, will grow but 7;; will remain low because all sites fail

identically. On the contrary, 17;; may grow while 7;, and 7;. remain low.

Output data unavailable. Output data can also be unavailable. Unavailability happens due
to three main reasons: the user did not specify the output path correctly, the application did not
produce the expected data, or the file catalog or storage resource are unavailable or unreachable.
The incident degree 7, is determined by the output transfer failure rate. Transfers of completed,

failed and running invocations are considered.

Site misconfigured for output data. The incident degree 7, in this incident is determined

as follows:
Nos = Max(Y1, ¥, ..., ¥) — median(y, Yo, . . ., Yy)

where ¢; denotes the output transfer failure ratio on site i, and k is the number of white-listed
sites used by the activity.

Application error. Applications can fail due to a variety of reasons among which: the appli-
cation executable is corrupted, dependencies are missing, or the executable is not compatible
with the execution host (see Section 3.3.3 in Chapter 3). The incident degree 17, in this state
is measured by the task failure rate due to application errors. Completed, failed, and running
tasks are considered.

Site misconfigured for application. The incident degree 7, in this state is measured as fol-
lows:

M. = max(ay, s, ..., a;) —median(ay, s, ..., @)

where «; denotes the task failure rate due to application errors on site i, and k is the number of

white-listed sites used by the activity.

4.3. Illustration on task errors 75

4.3.2 Incident levels

We replayed the events found in the science-gateway workload archive (Chapter 3) to compute
incident degree values after each event. Figure 4.5 displays histograms of computed incident
degrees. For readability purposes, only n; # 0 values are represented. Most of the histograms
appear multi-modal, which confirms that incident degrees are quantified. Level numbers and
threshold values 7 are set from visual mode detection in these histograms and reported on
Table 4.2 with associated actions.

= — —
B -
(3]
- =1
5 <
2 B S
g g8
E "_\—4—‘_'_|_'—l_‘ -
uO_)— —
o ol L. [
olo o2 0l4 o's o' 1o 0l ol2 0'4 o' o' 10
Input failed transfers — unavailability Input failed transfers — data does not exist
Niu 8 Nie
- S —
o [§V)
Q| —
> g > o
[&] [&]
o
g & g -
w N [T,
— [«
Te)
ol [_— o T _-—.—.—I_I—.;
0o o2 0l4 o' o' 1o 0l o2 0l4 o' o' 1o
Input failed transfers - site misconfigured Output failed transfers
o Nis MNou]
o
O_ Q
[ee)
L gl 2Q
o —— |_|_'_‘_|_I—|—|—v—c—\—
0l ol2 0'4 o' o' 10 0lo 0’2 0l4 o' o's 10
Output failed transfers - site misconfigured Application errors
nOS na
o —
o
el
)
c
[}
=}
o
0o
L a
T
I S e |
olo o'2 0'4 o' o' 10
Application errors — site misconfigured
T]as

Figure 4.5: Histograms of incident degrees sampled in bins of 5%.

Incidents at level 1 are considered harmless for the execution and they do not trigger any

action. Other levels can lead to radical (completely stop the activity or blacklist a site) or

76 A self-healing process for workflow executions on grids Chap. 4

Incident (x;) Number of incident Level 1 Level 2 Level 3
levels (m;) Ti1 actions | T2 actions Ti3 actions
x1: input data unavailable 3 0 0 0.2 replicate input files 0.8 stop activity
x2: input data does not exist 2 0 0 0.8 stop activity
x3: site misconfigured for input data 3 0 0 0.3 replicate files on sites reach- | 0.65 blacklist site
able from problematic site
x4: output data unavailable 2 0 0 0.8 stop activity
xs: site misconfigured for output data 2 0 0 0.1 blacklist site
Xe: application error 2 0 0 0.5 stop activity
x7: site misconfigured for application 2 0 0 0.1 blacklist site

Table 4.2: Incident levels and actions.

intermediate actions (file replication).

4.3.3 Association Rules

Association rules are computed based on the frequency of occurrences of two incident levels
in the training dataset. The confidence p;f’jv of arule x,, = x; ; measures the probability that an
incident level x; ; happens when x,, occurs. Table 4.3 shows rule samples extracted from the
workload archive and ordered by decreasing confidence value. The set of rules leading to input
data unavailable (x; », rules 1 and 2) and site misconfigured for input data (x3 3, rule 3) incidents
shows that they are partially dependent on other “cause” incidents, which is considered by the
self-healing process.

At the bottom of the table we find rules with null confidence. These are consistent with
common-sense interpretation of the incident dependencies. For instance, no site-specific issue
occurs when input data is unavailable (x33 = x; 3, rule 217), or does not exist (x33 = x5, rule
218), or vice-versa (rules 212 and 214).

4.3.4 Actions

Three actions are performed by the self-healing process: file replication, site blacklisting and

activity stop. The first two are described below.

File Replication. File replication is implemented differently depending on the incident. In
case of input data unavailability, a file is replicated to a storage resource selected randomly. In
case a site is misconfigured, replication to the site local storage resource is first attempted. This
aims at circumventing inter-domain connectivity issues. If there is no local storage available
or the replication process fails, then a second attempt is performed to a storage resource suc-
cessfully accessed by other tasks executed on the same site. Otherwise, a storage resource is

randomly selected. Algorithm 2 shows this process.

4.3. Illustration on task errors 77

u,v

Associationrule | p;
X12 = X712 0.1700
X12 = Xep 0.1538
X33 = Xi2 0.1538
Xsp = X13 0.1250
X13 = X72 0.1228
X520 = Xip 0.0625

AN B~ W N = H

127 X1p = X33 0.0454
128 X12 = X372 0.0116
129 X1 = X22 0.0037

211 X13 = X3p 0.0000
212 X13 = X33 0.0000
213 X202 = X32 0.0000
214 X202 = X33 0.0000
215 X320 = X13 0.0000
216 X320 = X2 0.0000
217 X33 = X|3 0.0000
218 X33 = X2 0.0000

Table 4.3: Confidence of rules between incident levels.

Site blacklisting. Problematic sites are only temporarily blacklisted during a time interval set
from exponential back-off. The site is first blacklisted for 1 minute only and then put back on
the white list. In case it is detected misconfigured again, then the blacklist duration is increased

to 2 minutes, then to 4 minutes, 16 minutes, etc.

4.3.5 Experiments

The healing process is implemented in the Virtual Imaging Platform (see description in Chap-
ter 2) and deployed in production. The experiments presented hereafter, conducted for two real
workflow activities, evaluate the ability of the healing process to (i) properly detect and handle
recoverable errors (Experiment 1) and (ii) quickly identify and report critical issues (Experi-

ment 2).

Experiment conditions. Experiment 1 aims at testing that recoverable errors are properly de-
tected and handled. This experiment uses a correct execution where all the input files exist and

the application is supposed to run properly and produce the expected results. Five repetitions

78 A self-healing process for workflow executions on grids Chap. 4

Algorithm 2 Site misconfigured: replication process for one file.

1: input: File f, set of storage resources S, set of completed tasks on the same site T
2: replicate f to local storage resource j

3: if replication not successful then

4. select storage s; € S where r € T could access s;, i # j

5 replicate f to s;

6: if replication nor successful then

7 select randomly s, € S, r # i

8 replicate f to s,

9: endif

10: end if

are performed for each workflow activity.

Experiment 2 aims at testing that unrecoverable errors are quickly identified and the
execution is stopped. Unrecoverable errors are intentionally injected in 3 different runs:
in run non-existent inputs, non-existent file paths are used for all the invocations;
in application-error, all the file paths exist but input files are corrupted; and in
non-existent output, input files are correct but the application does not produce the ex-
pected results.

Two workflow activities are considered for each experiment: FIELD-II/pasa and
Mean-Shift/hs3 (see Appendix A for description). Files are replicated on two storage
sites for both activities. For each experiment, a workflow execution using our method
(Self-Healing) is compared to a control execution (No-Healing). Executions are launched
on the biomed VO of the EGI, in production conditions. Self-Healing and No-Healing
are both launched simultaneously to ensure similar grid conditions. The DIRAC scheduler is
configured to equally distribute resources among executions.

The FuSM and healing process are implemented in the MOTEUR workflow engine. The
timeout value in the healing process is computed dynamically as the median of the task inter-
completion delays in the current execution. Task replication is performed by resubmitting
running tasks to DIRAC. MOTEUR is configured to resubmit failed tasks up to 5 times in all
runs of both experiments. We use DIRAC v5r12p9 and MOTEUR 0.9.19.

Results and discussion. Experiment 1: Table 4.4 shows occurrences of incident levels and
associated actions for the 5 repetitions. All recoverable incidents were observed, except site
misconfigured for output data (xs,). The healing process successfully detects and handles all
recoverable errors.

Experiment 2: Figure 4.6 shows the makespan of FIELD-II/pasa and Mean-Shift/hs3
for the 3 runs where unrecoverable errors are introduced. No-Healing was manually stopped
after 7 hours to avoid flooding the infrastructure with faulty tasks. In all cases, Self-Healing

is able to detect the issue and stop the execution far before No-Healing. It confirms that the

4.4. Improvements to mode detection 79

Activity Incident level | Occurrence | Actions
FIELD-II/pasa X12 32 | replicate input files
X72 12 | blacklist site
Mean-Shift/hs3 X12 23 | replicate input files
X32 16 | replicate files on sites
X33 6 | blacklist site
X72 8 | blacklist site

Table 4.4: Experiment 1: occurrences of incident levels (cumulative values for 5 repeti-
tions).

healing process is able to identify unrecoverable errors and stop the execution accordingly. As
shown on Table 4.5, the number of submitted fault tasks is significantly reduced, which has
benefits both to the infrastructure and to the gateway.

. No-Healing
. Self-Healing

> e
6‘\\(&\‘\6 \\\Qa “\‘\9

25000 —

20000 —

15000 —

10000 —

Makespan (s)

5000 -

>
e &
0‘\\93 s
W @ o

e
\\\“?’
R\

application-error non-existent mput non existent output

Figure 4.6: Experiment 2: makespan of FIELD-II/pasa and Mean-Shift/hs3 for 3 dif-
ferent runs.

Although the healing process detects and stops the execution of unrecoverable workflow
executions earlier than control executions, it still takes some time to perform the action. As we
are in online and non-clairvoyant conditions, we should wait for the completion of a few tasks

to be able to draw an execution model. Then, actions can be taken to cope with errors.

4.4 Improvements to mode detection

In Section 4.3.2 we determined incident levels numbers and thresholds from visual mode detec-
tion in the histograms showed in Figure 4.5. We assume that modes in the observed distribution
of n; are well separated. Otherwise, the metric used to determine 7; does not properly quan-

tifies an incident. Two possible ways to improve mode detection are (i) automated detection

80 A self-healing process for workflow executions on grids Chap. 4

Number of tasks

Run Self-Healing | No-Healing
application-error FIELD-II/pasa 196 732
Mean-Shift/hs3 249 1500

non-existent input | FIELD-II/pasa 293 732
Mean-Shift/hs3 417 1500

non-existent output | FIELD-II/pasa 287 732
Mean-Shift/hs3 364 1500

Table 4.5: Number of submitted faulty tasks.

(e.g. with K-Means [MacQueen, 1967] or Mean-Shift [Comaniciu and Meer, 2002]), and (if)
periodical update from execution history.

Figure 4.7 shows histograms of computed incidents degrees clustered with K-Means. Inci-
dent levels thresholds are defined from the highest value of a group (except for the last group),
and are showed in Table 4.6. For each incident, k clusters are set according to the number of
incident levels m; from Table 4.2. Most threshold values are similar to the ones determined by
visual mode detection, except for incidents x, (input data does not exist) and x3 (site miscon-
figured for output data). This divergence of values is related to the scarce appearance of these

incidents on the platform, i.e., the amount of incident degree values is insufficient to determine

a mode.
Incident (x;) Number of incident | Level 1 | Level 2 | Level 3

levels (m;) Til Tio Ti3

x1: input data unavailable 3 0 0.2 0.75

Xp: input data does not exist 2 0 0.3

x3: site misconfigured for input data 3 0 0.1 0.5

X4: output data unavailable 2 0 0.7

Xs: site misconfigured for output data 2 0 0.25

Xe: application error 2 0 0.55

x7: site misconfigured for application 2 0 0.15

Table 4.6: Incident levels determined with K-Means.

From the histogram of the input data does not exist incident degree (1), three clusters
could be identified by visual detection: 7,; = 0, 75, = 0.3, and 7,5 = 0.8. However, the
common-sense interpretation of the incident lead us to two configurations: recoverable and un-
recoverable. For incident degrees values lower than 0.8 the incident is considered harmless and
no action is triggered. Otherwise, the incident is considered unrecoverable and the execution
should be stopped.

K-Means clustering could be envisaged as an alternative to automate mode detection when

an incident happens exhaustively on the platform, so that modes can be well identified. Other-

4.5. Conclusion 81

2500

2000
4000-

B\ >
81500- 3
[} [}
=} =}
8 1000- 3
1000 {£ 2000~
500-
N R = B
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Niu Nie
5000- 2500-
4000~ 2000-
a >
23000~ 21500-
[} [}
= >
2000~ 1000
w w
1000- 500-
0 R e 0- L____J¥;
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Nie Nou
5000-
3000~
4000~
z z
£ 2000- £3000
> =]
g g
s L 2000
1000-
1000~
0 _ — - — 0
0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 1.00
Nos Nie
15000~
3
£10000 -
(7]
=]
o
o
w
5000-
ol
0.00 0.25 0.50 0.75 1.00

Nas

Figure 4.7: Histograms of incident degrees clustered with K-Means sampled in bins of 5%.

wise, visual mode detection still is the most suitable.
Similarities between incident distributions could also be studied to determine relations of

dependency between threshold values and applications.

4.5 Conclusion

We presented a simple, yet practical method for autonomous detection and handling of opera-
tional incidents on workflow executions. No strong assumption is made on the task duration or
resource characteristics and incident degrees are measured with metrics that can be computed
online. We made the hypothesis that incident degrees were quantified into distinct levels, which

we verified using real traces collected from the Virtual Imaging Platform. Incident levels are

82 A self-healing process for workflow executions on grids Chap. 4

associated offline to action sets. Action sets are selected based on the degree of their associated
incident level and on confidence of association rules determined from execution history.

We showed an application of the healing process on seven simple incidents related to input
and output data transfer errors, and application execution errors. The strategy was implemented
in the MOTEUR workflow engine and deployed on the European Grid Infrastructure with the
DIRAC resource manager. Results show that our healing mechanism properly detects and han-
dles recoverable and unrecoverable errors, which significantly reduces the execution makespan.
The time spent to acquire information about the workflow execution impacts on the makespan
of unrecoverable executions, delaying their cancellation.

Mode detection could be automated, for instance, by using K-Means clustering. However,
this technique can only be applied when modes are well defined. Otherwise, visual mode
detection is still recommended.

In the next chapters of this part, we use our self-healing mechanism to address two activity-
level incidents: the long tail effect issue (Chapter 5), and the task granularity problem (Chap-

ter 6); and an incident at platform level: unfairness among workflow executions (Chapter 7).

Chapter S

Handling blocked activities

Contents
51 Introductionttt itineeeeneeeenn 84
52 SlopeContractionottt eossoneeess 85
5.2.1 Incidentdegree andlevels 85
5.2.2 Experimentsandresults 86
5.3 Median Estimation. i i e 88
5.3.1 Incidentdegreeandlevels 88
5.3.2 Experimentsandresults L. 92
54 Conclusionttt e 93

he long-tail effect is a common frustration
for users who have to wait to retrieve the
last pieces of their computation. This issue hap-
pens due to execution on slow machines, poor
network connection, or communication issues,
and leads to substantial speed-up reductions. In

this chapter, we propose a new algorithm to han-

dle the long-tail effect and to control task repli-
cation. The healing process is parametrized on
real application traces acquired in production on
the European Grid Infrastructure. Experimental
results obtained in the Virtual Imaging Platform
show that the proposed method speeds up execu-
tion up to a factor of 4.5, and consumes up to

35% less resource time than a control execution.

84 Handling blocked activities

Chap. 5

es retards de tdches sont une frustration
L courante pour les utilisateurs qui doivent
attendre de récupérer les derniers morceaux de
leur calcul. Ce probleme se produit en rai-
son de machines lentes, d’une mauvaise connex-
ion au réseau, ou de problemes de communica-
tion, et conduit a d’importantes ralentissements.

Dans ce chapitre, nous proposons un nouvel al-

gorithme pour gérer les retards de tdches et pour
controler la réplication des tdches. Le proces-
sus de auto-administration est paramétré sur les
traces d’applications réelles acquises sur EGI.
Les résultats expérimentaux obtenus sur la plate-
Jorme VIP montrent que la méthode proposée ré-
duit le temps de calcul d’un facteur pouvant at-

teindre 4,5, et consomme jusqu’a 35% de moins

de ressources que I’exécution témoin.

5.1 Introduction

The long-tail effect [Cirne et al., 2007] is a common frustration for users who have to wait to
retrieve the last few pieces of their computations (a.k.a. late tasks). Tasks may be delayed, for
instance, due to execution on a slow machine, low network throughput or just loss of contact.
Science-gateways operators may be able to address this problem by rescheduling these tasks,
but detection is very time consuming and still approximate. Instead, actions should be triggered

automatically when late tasks are detected in an activity.

In this chapter, we present a self-healing process that quantifies the incident degree of
blocked workflow activities from metrics measuring the long-tail effect. We propose two
methods to determine the incident degree. The first, named Slope Contraction, identifies
blocked activities by detecting decreases of the derivative along time of the number of com-
pleted tasks, and the second, named Median Estimation, identifies blocked activities as the
ones whose tasks are performing worse than the median of already completed tasks. In both
cases, tasks are assumed of identical costs. This assumption considers that the variation of
task durations of correct executions due to resource heterogeneity is negligible compared to the

variation when an incident happens.

Algorithm 3 describes our activity blocked control process. The methods are implemented
in VIP, and evaluated with different applications, in production conditions, on the European
Grid Infrastructure.

The first method to detect blocked activities (Slope Contraction) is presented in Sec-
tion 5.2. Section 5.3 presents the second method to cope with blocked activities and the task

replication control process (Median Estimation). Section 5.4 concludes the chapter.

5.2. Slope Contraction 85

Algorithm 3 Main loop for activity blocked control

1: input: m workflow executions

2: while there is an active workflow do

3: wait for timeout or task status change in any workflow
determine blocked degree 7,
if i, >7, then

end if

4
5
6: replicate late tasks
7
8: end while

5.2 Slope Contraction

5.2.1 Incident degree and levels

Activity blocked degree 7,. This incident is detected online from the number n(f) of com-
pleted tasks at time ¢ (see Figure 5.1). At time ¢, we compute the slope a(?) of the regression
line of {(#;, n(t;)), t; < t}. If the iteration is triggered by a timeout instead of an event (see step
01 on Algorithm 1 in Chapter 4), then (¢, n(¢) + 1) is added to the regression set. This is meant
to ensure that long-running tasks can be handled before they complete. We then define the

incident degree 1, from the contraction rate of the linear regression slope:

a(t)
amax(t)

where an,,(?) is the maximal value of a(7) in [0, ¢]. # = 0 is the time when the activity is started,

m=1-

i.e., all the tasks are initialized. Note that the maximum degree 7, = 1 is reached when the

activity is completely blocked (lim,_, a(tf) = 0). On the other hand, 7, = 0 is reached when
Cl(l) = Amax (7).

'

completed invocations

»
t time

Figure 5.1: Detection of blocked activity.

86 Handling blocked activities Chap. 5

Threshold value 7,. The threshold value for 7, separates configurations where the activity
has acceptable performance (1, < 7;,) from configurations where the activity is blocked (7, >
75). We determine 7, from observed distributions of 7,. The blocked degree 7, was computed
after each event found in the workload archive (Chapter 3), and as shown in Figure 5.2. The
histogram appears bimodal, which indicates that 7, separates platform configurations in two
distinct groups; we choose 7, = 0.6. We assume that values in the lowest mode correspond to
acceptable performance, and values in the highest mode correspond to low performance. Thus,

for n, > 0.6, task replication will be triggered. Tasks are replicated if there are no queued

replicas.
5
g3
=l
>
[@ pu—
o
5 ﬂWﬂTm
N_
-
00 o 04 06 o8 10
Slope Contraction
Nb

Figure 5.2: Histogram of activity blocked degree sampled in bins of 0.05.

5.2.2 Experiments and results

The experiment presented hereafter evaluate the ability of the Slope Contraction method to

improve workflow makespan when tasks are late.

Experiment conditions. The healing control process was implemented as a plugin of the
MOTEUR workflow engine, receiving notifications about task status changes and task phase
durations. Task replication is performed by resubmitting running tasks to DIRAC. To avoid
concurrency issues in the writing of output files, a simple mechanism based on file renaming
is implemented. To limit infrastructure overload, running tasks are replicated up to 5 times.
MOTEUR is configured to resubmit failed tasks up to 5 times in all runs. We use DIRAC
v5r12p9 and MOTEUR 0.9.19.

The experiment aims at testing that blocked activities are properly detected and handled;
the other incidents are ignored. This experiment uses a correct execution where the applica-
tion is supposed to run properly and produce the expected results. Five repetitions are per-
formed for each workflow activity. Two workflow activities are considered for the experiment:
FIELD-II/pasa and Mean-Shift/hs3 (see Appendix A for description). Table 5.1 shows

their main characteristics.

5.2. Slope Contraction 87

Workflow activity #Tasks CPU time Input Output
FIELD-II (data-intensive) 122 few seconds to 15 minutes ~208 MB ~40 KB
Mean-Shift (CPU-intensive) 250 few minutes to 1 hour ~182 MB ~1 KB

Table 5.1: Workflow activity characteristics.

A workflow execution using our method (Self-Healing) is compared to a control exe-
cution (No-Healing). Executions are launched on the biomed VO of the EGI, in production
conditions. Self-Healing and No-Healing are both launched simultaneously to ensure sim-
ilar grid conditions. The DIRAC scheduler is configured to equally distribute resources among
executions.

Task replication may waste resources, i.e., resources are consumed by a set of tasks that
compute the same operations. Cirne et al. [Cirne et al., 2007] define waste as the ratio between
the number of cycles consumed by replicas unused by the application and the total of cycles
necessary to execute the application. This metric does not fit our context because it cannot
provide an effective estimation of the amount of resource wasted by self-healing executions
when compared to the control ones. Here, resource waste is assessed by the amount of resource
time consumed by Self-Healing executions related to the amount of resource time consumed

by control executions. We use the waste coefficient (w), defined as follows:

3 i hi+ 2 1 |
Z?:l Ci

where h; and c; are the resource time consumed (CPU time + data transfers time) by n com-

w

pleted tasks for Self-Healing and No-Healing executions respectively, and r; is the resource
time consumed by m unused replicas. Note that task replication usually leads to h; < ¢;. If
w > 0, Self-Healing wastes resources compared to the control. If w < 0, Self-Healing

consumes less resources than the control, which can happen when faster resources are selected.

Results and discussion. Figure 5.3 presents the makespan of FIELD-II/pasa and
Mean-Shift/hs3 for the 5 repetitions. The makespan was considerably reduced in all rep-
etitions of both activities. Speed-up values yielded by Self-Healing ranged from 2.6 to 4 for
FIELD-II/pasa and from 1.3 to 2.6 for Mean-Shift/hs3.

Figure 5.4 present a cumulative density function (CDF) of the number of completed tasks
for FIELD-II/pasa (top) and Mean-Shift/hs3 (bottom). In most cases completion curves
of both Self-Healing and No-Healing executions are similar up to 95%. This confirms that
both executions had similar grid conditions. In some cases (e.g. Repetition 2 for FIELD-II
in Figure 5.4) the Self-Healing has lower performance than No-Healing but it is compen-
sated by the long-tail effect produced by the latter.

Tables 5.2 show the waste coefficient value for FIELD-II/pasa (top) and
Mean-Shift/hs3 (bottom). The Self-Healing process consumed up to 33% more re-

88 Handling blocked activities Chap. 5

12000 —

10000 —

% 8000 —
6000 — B No-Healing
. Self-Healing

4000 -

2000 -

Makespan (s

Repetmons
14000 —
12000 —
10000 —
O
< 8000 —
g B No-Healing
¢ 6000 B selt-Healing
S 4000 -
2000 —
Repetltlons

Figure 5.3: Execution makespan for FIELD-II/pasa (top) and Mean-Shift/hs3 (bot-
tom) by using the Slope Contraction method.

sources for FIELD-II/pasa and 75% for Mean-Shift/hs3 compared to a control execution.
Even if this mechanism properly detects blocked states, it wastes the resources of badly
performing tasks that will be overlapped by replicas. This waste of resource is related to (i) a
late detection of the blocked state and (i7) a greedy replication process. For instance, the poor
performance of a task submitted at the beginning of the execution can be masked by the good
performance of the others. In the next section, we present a novel metric to determine blocked
activities based on the median estimation of task execution times, which considers both early
detection and waste.

5.3 Median Estimation

5.3.1 Incident degree and levels

Activity blocked degree 17,. We define the incident degree 7, of an activity from the max
of the performance coefficients p; of its n tasks, which relate the task phase durations (setup,
inputs download, application execution and outputs upload) to their medians:

Li .
Ny = 2. max {pl = p(ti,i) = m,l S [1,1’1]} -1 (51)

5.3. Median Estimation 89

Repetition 1 Repetition 2 Repetition 3

I I I I I I I
100 150 200 O 50 100 150 0 50 100 150 — No-Healing

Repetition 4 Repetition 5 ---- Self-Healing

| | | | | | | | | |
0 20 40 60 80 100 120 0 50 100 150

Time (min)

Repetition 1 Repetition 2 Repetition 3
1.0- 72 s

I I I I I I I I
fa 0 50 100 150 0 50 100 150 0 20 40 60 80 — No-Healing
(@)

Repetition 4 Repetition 5 ---- Self-Healing

I I I I I I I
0 50 100 150 200 O 50 100 150 200

Time (min)

Figure 5.4: CDF of the number of completed tasks for FIELD-II/pasa (top) and
Mean-Shift/hs3 (bottom) repetitions by using the Slope Contraction method.

90 Handling blocked activities Chap. 5

Repetition h r c w

1 39,035s | 28,653s | 55,244s 0.22

2 37,035s | 5,191s | 50,829s | —0.17

3 28,454s | 9,594s | 28,594s 0.33

4 21,021s | 13,764s | 27,586s 0.26

5 37,494s | 13,438s | 42,019s 0.21

Repetition h r c w
1 84,499s | 74,917s | 95,319s | 0.67

2 121,496s | 88,963s | 129,250s | 0.63
3 81,745s 16,418s | 88,032s | 0.11
4 98,235s | 146,016s | 141,292s | 0.73
5 103,867s | 81,614s | 105,783s | 0.75

Table 5.2: Waste coeflicient values for FIELD-II/pasa (top) and Mean-Shift/hs3 (bot-
tom) by using the Slope Contraction method.

where t; = t; serup+1i input +1i exec T i ourpur 1S the estimated duration of task i and 7 = Fsepp + Finpus +
Texee + Toupur 18 the sum of the median durations of tasks 1 to n. Note that max{p;,i € [1,n]} €
[0.5, 1] so that i, € [0, 1]. Moreover, lim,_,,« p; = 1 and max{p;,i € [1,n]} = 0.5 when all the
tasks behave like the median. When less than 2 tasks are completed, medians remain undefined
and the control process is inactive.

The estimated duration #; of a task is computed phase by phase, as follows: (i) for com-
pleted task phases, the actual consumed resource time is used; (ii) for ongoing task phases, the
maximum value between the current consumed resource time and the median consumed time
is taken; and (iii) for unstarted task phases, the time slot is filled by the median value. Fig-
ure 5.5 illustrates the estimation process of a task where the actual durations are used for the
two first completed phases (42s for setup and 300s for inputs download), the application
execution phase uses the maximum value between the current value of 20s and the median
value of 400s, and the last phase (outputs upload) is filled by the median value of 135s, as it
is not started yet.

Median Task Estimated Task Real Task
t setup { 50s 42s 42s
. }completed
tiinput 1| 250s 300s 300s
ti execution{| 400s 400s [<¢----=-=-=--1 20s | } current
ti_output { 15s 15s ?

Figure 5.5: Task estimation based on median values.

Threshold value 7,. Figure 5.6 shows the distribution of 7,. Since the modes are not clearly

separable visually, we used K-Means to determine the threshold value 7, = 0.35. We assume

5.3. Median Estimation 91

that values in the lowest mode correspond to acceptable performance, and values in the highest

mode correspond to low performance. Thus, for 17, > 0.35 task replication will be triggered.

150-
a

©100-
(4]
>
o
o
LL

50-

O,

0.00 0.25 0.50 0.75 1.00
No

Figure 5.6: Histogram of activity blocked degree sampled in bins of 0.05.

Task replication. Blocked activities are addressed by task replication. To limit resource
waste, the replication process for a particular task is controlled by two mechanisms. First, a
task is not replicated if a replica is already queued. Second, if replica j has better performance
than replica r (i.e. p(t.,t;) > 75, see equation 5.1) and replica j is in a more advanced phase
than replica r, then replica r is aborted. Algorithm 4 presents the algorithm of the replication
process. It is applied to all tasks with p; > 7, as defined on equation 5.1.

Algorithm 4 Replication process for one task.

1: input: Set of replicas R of a task i
2: rep = true
3: for reR do

4: for jeR, j+r do

5: if p(¢.,t;) > 7 and jis a step further than r then
6: abort r

T: end if

8: end for

9: if risstarted and p(z,,7) < 7 then
10: rep = false

11: elseif risqueued then

12: rep = false

13: endif

14: end for

15: if rep == true then
16: replicate r
17: end if

92 Handling blocked activities Chap. 5

5.3.2 Experiments and results

The experiment presented hereafter evaluate the ability of the activity blocked control process

to improve workflow makespan without wasting resources in case of tasks are late.

Experiment conditions. The experiment is performed in the exact same conditions as the

experiment described in Section 5.2.2.

Results and discussion. Figure 5.7 shows the makespan of FIELD-II/pasa (top) and
Mean-Shift/hs3 (bottom) for the 5 repetitions. The makespan values are comparable to
the results presented in Figure 5.3. The makespan was considerably reduced in all repeti-
tions of both activities. Speed-up values yielded by Self-Healing ranged from 1.7 to 4.5 for
FIELD-II/pasa and from 1.5 to 3.2 for Mean-Shift/hs3.

12000

8000 -
B No-Healing
|1 self-Healing
4000 - I
O -
I I I I I
1 2 3 4 5

Makespan (s)

Repetitions
12000 -
)
g 8000 -
2 . No-Healing
% 1| self-Healing
0 -
I I I I I
1 2 3 4 5
Repetitions

Figure 5.7: Execution makespan for FIELD-II/pasa (top) and Mean-Shift/hs3 (bot-

tom) by using the Median Estimation method.

Analogously to Figure 5.4, Figure 5.8 present the CDF of the number of completed tasks
for both applications. Again, curve similarities up to 95% indicate similar grid conditions.

Table 5.3 shows the waste coeflicient values for the 5 repetitions for FIELD-II/pasa (top)
and Mean-Shift/hs3 (bottom). The Self-Healing process reduces resource consumption
up to 35% when compared to the control execution. This happens because replication increases
the probability to select a faster resource. The total number of replicated tasks for all repeti-
tions 1s 292 for FIELD-II/pasa (i.e. 0.48 task replication per task in average) and 712 for
Mean-Shift/hs3 (i.e. 0.57 task replication per task in average).

5.4. Conclusion 93

Repetition h r c w
1 41,338s | 23,823s | 71,853s | —0.09
2 37,190s | 28,251s | 66,435s | —0.01
3 40,209s | 25,068s | 68,792s | —0.05
4 39.009s | 32,973s | 78,723s | —0.08
5 38,847s | 37,393s | 78,988s | —0.03
Repetition h r c w
1 97,875s | 17,799s | 116,853s | —0.01

2 85,100s | 19,086s | 161,801s | —0.35
3 98,736s | 25,162s | 125,615s | —0.01
4 107,071s | 62,746s | 204,456s | —0.17
5 126,344s | 2,195s | 131,446s | —0.02

Table 5.3: Waste coeflicient values for FIELD-II/pasa (top) and Mean-Shift/hs3 (bot-
tom) by using the Median Estimation method.

Experiment results show that Slope Contraction and Median Estimation methods
properly detect blocked activities and speed up the execution. Although task replication is
controlled (see Algorithm 4), Median Estimation performs similar to Slope Contraction,

which indicates that blocked tasks are detected earlier.

5.4 Conclusion

In this chapter, we presented two methods to cope with the activity blocked incident: Slope
Contraction and Median Estimation. The first one identifies blocked activities by detect-
ing decreases of the derivative along time of the number of completed tasks, and the second
identifies blocked activities as the ones whose tasks are performing worse than the median of
already completed tasks. No strong assumption is made on the task duration or resource char-
acteristics. Experimental results show that both methods properly detect blocked activities and
speed up workflow executions up to a factor of 4.5.

We also defined a waste metric to compute the amount of resource time consumed by self-
healing executions compared to control executions. Results show that Median Estimation
consumes up to 35% less resources than a control execution, while Slope Contraction con-
sumes up to 75% more resources.

We believe that results of this chapter are the first ones presented to control blocked activi-
ties in such conditions which are often met in production platforms.

The Median Estimation method is currently used in production by VIP. It is implemented
as a plugin for GASW!. From August 2012 to February 2013 , more than 3400 workflow
executions benefited from the activity blocked control process.

Thttp://vip.creatis.insa-1lyon.fr:9002/projects/gasw-healing-plugin

http://vip.creatis.insa-lyon.fr:9002/projects/gasw-healing-plugin

94 Handling blocked activities Chap. 5

In the next chapter, we present a healing process to control the granularity of workflow
activities. Our method groups tasks when the fineness degree of the application becomes higher

than a threshold. In addition, a de-grouping mechanism is triggered when new resources arrive.

5.4. Conclusion 95

Repetition 1 Repetition 2 Repetition 3

1.00 = o=

0.75 = g

0.50 — ‘

0.25 =

0.00 =

I I I I I I I I I I I I I
é 0 50 100 150 0 50 100 150 0 50 100 150 200 — No-Healing

Repetition 4 Repetition 5 --- Self-Healing

1 1 1 1 1 1 1 1 1
0 25 50 75 0 20 40 60 80
Time (min)

Repetition 2 Repetition 3

0 50 100 0 30 60 90 — No-Healing
Repetition 5 --- Self-Healing

1 1 1 1 1 1 1 1 1
0 50 100 150 200 O 50 100 150
Time (min)

Figure 5.8: CDF of the number of completed tasks for FIELD-II/pasa (top) and
Mean-Shift/hs3 (bottom) repetitions by using the Median Estimation method.

96

Handling blocked activities

Chap. 5

Chapter 6

Optimizing task granularity

Contents
6.1 Introduction ittt ittt nneeennn 98
6.2 Task Granularity Control Process oot v vt v oo 99
6.2.1 Finenesscontrol 99
6.2.2 Coarsenesscontrol Lo 102
6.3 ExperimentsandResults00ttt teeens 103
6.3.1 Experiment Conditions 103
6.3.2 Resultsand Discussiono 104
64 Conclusionttt e e 105

C ontrolling the granularity of workflow ac-
tivities executed on grids is required to re-

duce the impact of task queuing and data trans-
fer time. Most existing granularity control ap-
proaches assume extensive knowledge about the
applications and resources (e.g. task duration on
each resource), and that both the workload and
available resources do not change over time. We
propose a granularity control algorithm for plat-
forms where such clairvoyant and offline con-
ditions are not realistic. Our method groups
tasks when the fineness degree of the application,

which takes into account the ratio of shared data

and the queuing/round-trip time ratio, becomes
higher than a threshold determined from execu-
tion traces. The algorithm also de-groups task
groups when new resources arrive. The appli-
cation’s behavior is constantly monitored so that
the characteristics useful for the optimization are
progressively discovered. Experimental results,
obtained with 3 workflow activities deployed on
EGI, show that (i) the grouping process yields
speed-ups of about 2.5 when the amount of avail-
able resources is constant and that (ii) the use
of de-grouping yields speed-ups of 2 when re-

sources progressively appear.

98 Optimizing task granularity

Chap. 6

e contrdle de la granularité des activités
L de workflows exécutés sur grille est néces-
saire pour réduire 'impact des temps d’attente
et de transferts de données. La plupart des
approches existantes de controle de granular-
ité supposent une connaissance approfondie sur
les applications et les ressources (par exemple,
durée de la tdche sur chaque ressource), et que
la charge de travail et les ressources disponibles
ne changent pas au fil du temps. Nous pro-
posons un algorithme de contrdle de granular-
ité pour les plate-formes oun les conditions de
clairvoyance et « offline » ne sont pas réal-
istes. Notre méthode regroupe les tdches lorsque
le degré de finesse de I’application, qui prend

en compte la proportion de données partagées

et le ratio temps d’attente | temps d’attente
plus temps d’exécution, devient supérieur a un
seuil déterminé a partir des traces d’exécution.
L’algorithme dégroupe également des groupes
de tdaches lorsque de nouvelles ressources ar-
rivent. Le comportement de [’application est
suivi en permanence de telle sorte que les car-
actéristiques utiles pour I’optimisation sont pro-
gressivement découvertes. Les résultats expéri-
mentaux, obtenus avec 3 activités de workflow
déployés sur EGI, montrent que (i) le processus
de regroupement accélere I’exécution d’un fac-
teur environ 2,5 lorsque la quantité de ressources
disponibles est constante et que (ii) l'utilisation
dégroupage accélere I’exécution d’un facteur 2

lorsque les ressources apparaissent progressive-

ment.

6.1 Introduction

The low performance of lightweight (a.k.a. fine-grained) tasks is a common problem on
widely distributed platforms where the communication overhead and queuing time are high,
such as grid systems.
into coarse-grained tasks [Muthuvelu et al., 2013, Singh et al., 2008, Muthuvelu et al., 2005,
Ng et al., 2006, Ang et al., 2009], which reduces the cost of data transfers when grouped tasks

To address this issue, fine-grained tasks are commonly grouped

share input data [Muthuvelu et al., 2013] and saves queuing time when resources are lim-
ited [Singh et al., 2008]. However, task grouping also limits parallelism and therefore should
be used sparingly.

We consider such a granularity problem in a science-gateway executing workflows on a
grid. We propose an algorithm to optimize the granularity of workflow activities on non-
clairvoyant online grid platforms. Our algorithm progressively discovers the characteristics
of the running applications to compute a metric quantifying the fineness degree of a task group.
This fineness metric includes measured task queuing times, and median-based estimations of
task running times and transfer time of shared input data. Tasks are grouped when the fineness
metric goes beyond a threshold learned from platform traces. In addition, a de-grouping mech-
anism is triggered when parallelism losses are detected, i.e. when the number of queued tasks is
lower than the number of running tasks. The method is implemented in VIP, and evaluated with

different applications, in production conditions, on the European Grid Infrastructure (EGI).

6.2. Task Granularity Control Process 99

To the best of our knowledge, this algorithm is the first example of task granularity control
in a non-clairvoyant online context. The next Section details the granularity control process,
Section 6.3 reports experiments and results, and the chapter closes with a discussion and con-

clusions.

6.2 Task Granularity Control Process

Algorithm 5 describes our task granularity control composed of two processes: (i) fineness
control groups too fine task groups for which the fineness degree 7, is greater than threshold
74, and (ii) coarseness control de-groups too coarse task groups for which the coarseness degree
1. is greater than threshold 7.. This section describes how 7y, i, 7 and 7. are computed, and
details the grouping and de-grouping algorithms.

Algorithm 5 Main loop for granularity control

1: input: n waiting tasks

2: create n 1-task groups T;

3: while there is an active task group do
wait for timeout or task status change

determine fineness degree ¢

4

5:

6: if ny >7/ then
7 group task groups using Algorithm 6
8 end if

9: determine coarseness degree 7,

10: if . >7. then

11: degroup coarsest task groups

12: endif

13: end while

6.2.1 Fineness control

Fineness degree ;. Let n be the number of waiting tasks in a workflow activity, and m the
number of task groups. Tasks of an activity are assumed independent, but with similar costs
(bag of tasks). Initially, 1 group is created for each task (n = m). T; is the set of tasks in
group i, and n; is the number of tasks in 7;. Groups are a partition of the set of waiting tasks:
Ti(Nix; Tj = 0 and };2; n; = n. The activity fineness degree 7, is the maximum of all group

fineness degrees f;:

nr= l_lg[llanfl(ﬁ)- 6.1

All n; are in [0,1], and high fineness degrees indicate fine granularities. We use a max operator

in this equation to ensure that any task group with a too fine granularity will be detected. The

100 Optimizing task granularity Chap. 6

fineness degree f; of group i is defined as:

fi = dl' * i, (62)

where d; is the ratio between the transfer time of the input data shared among all tasks in the
activity, and the total execution time of the group:

_shared

d,’ = = — s
t shared + ni(t —1 shared)

where 7 474 1S the median transfer time of the input data shared among all tasks in the activity,
and 7 is the sum of its median task phase durations corresponding to application setup, input data
transfer, application execution and output data transfer: 7 = 7 seup+7 inpur+1 exec+1 ourpur- Median
values 7 4. and 7 are computed from values measured on completed tasks (see Section 5.3 in
Chapter 5). When less than 2 tasks are completed, medians remain undefined and the control
process is inactive. This online estimation makes our process non-clairvoyant with respect to
the task duration which is progressively estimated as the workflow activity runs. Yet, it assumes
that all tasks in an activity have similar costs.

In equation 6.2, r; is the ratio between the max of the task queuing times ¢; in the group,

and the total round-trip time (queuing+execution) of the group:

. ma}je[l,n,-] q; _
MaXje(1,n,1qj + _sharea + Mt = T_sharea)

Group queuing time is the max of all task queuing times in the group; group execution time
is the time to transfer shared input data plus the time to execute all task phases in the group
except for the transfers of shared input data. Note that d;, r;, and therefore f; and 5 are in [0, 1].
n¢ tends to O when there is little shared input data among the activity tasks or when the task
queuing times are low compared to the execution times; in both cases, grouping tasks is indeed
useless. Conversely, 175 tends to 1 when the transfer time of shared input data becomes high,
and the queuing time is high compared to the execution time; grouping is needed in this case.

Threshold value 74. The threshold value for 7, separates configurations where the activity’s
fineness is acceptable (n; < 7;) from configurations where the activity is too fine (75 >77). We
determine 7, from execution traces, inspecting the modes of the distribution of 7. Values of
1y in the highest mode of the distribution, i.e. which are clearly separated from the others, will
be considered too fine.

The fineness degree n; was computed after each event found in the workload archive (Chap-
ter 3). Figure 6.1 shows the histogram of these values. The histogram appears bimodal, which
indicates that 17, separates platform configurations in two distinct groups. We assume that these
groups correspond to “acceptable fineness” (lowest mode) and “too fine granularity” (highest

mode), and thus we choose 74 = 0.55. For 7y > 0.55, task grouping will therefore be triggered.

6.2. Task Granularity Control Process 101

g 3
g ®
2 o
5 _
o
o
o
.q‘.) p—
3 [I I I I]
0.0 0.2 0.4 0.6 0.8 1.0
Nt

Figure 6.1: Histogram of fineness incident degree sampled in bins of 0.05.

Task grouping. We assume that running tasks cannot be pre-empted, i.e. only waiting tasks
can be grouped. Algorithm 6 describes our task grouping. Groups with f; > 7, are grouped
pairwise until 7y < 7 or until the amount of waiting groups Q is smaller or equal to the amount
of running groups R. Although 1, ignores scattering (Equation 6.1 uses a max), the algorithm
considers it by grouping tasks in all groups where f; > 7. Ordering groups by decreasing f;
values tends to equally distribute tasks among groups. The grouping process stops when Q < R
to avoid parallelism loss. This condition also avoids conflicts with the de-grouping process
described in the next sub-section.

Algorithm 6 Task grouping

1: input: fi to f,, //group fineness degrees, sorted in decreasing order
2: input: Q, R // number of queued and running task groups
3: fori=1tom—1do

4: j=i+1

5: while fi>tsand Q > Rand j <mdo
6: if f; > 7, then

7 Group all tasks of T'; into T;

8: Recalculate f; using Equation 6.2
9: 0=0-1

10: end if

11: j=Jj+1

12: end while

13: i=j

14: end for

15: Delete all empty task groups

102 Optimizing task granularity Chap. 6

6.2.2 Coarseness control

Condition Q > R used in Algorithm 6 ensures that all resources will be exploited if the number
of available resources is stationary. In case the number of available resources decreases, the
fineness control process may further reduce the number of groups. However, if the number of
available resources increases, task groups may need to be de-grouped to maximize resource
exploitation. This de-grouping is implemented by our coarseness control process.

The coarseness control process monitors the value of 7. defined as:

_ R
T Q+R
The threshold value 7. is set to 0.5 so that . > 7. © Q < R.

e (6.3)

When an activity is considered too coarse, its groups are ordered by increasing values of
ny and the first groups (i.e. the coarsest ones) are split until . < 7.. Note that de-grouping
increases the number of queued tasks, therefore tends to reduce n.. Table 6.1 illustrates the

method on a simple example.

In this example, let’s consider a workflow composed of one activity with 10 tasks initially split in
10 groups, and assume that task input data are shared among all tasks (i.e. 7 sared = T _inpur)-
Let7= 10 and 7 4.4 = 7 (in arbitrary time units) obtained from two completed task groups.

At time 7, we assume R = 2 and Q = 6 with the following values for waiting task groups:

i maXjeinq; | di T fi

5 50 0.70 0.83 | 0.58
6 48 0.70 0.82 | 0.58
7 45 0.70 0.81 | 0.57
8 43 0.70 0.81 | 0.57
9 41 0.70 0.80 | 0.56
10 40 0.70 0.80 | 0.56

Eq. 6.1 gives 7y = 0.58. As iy > 7y = 0.55 and Q > R, the activity is considered too fine and
task grouping is triggered. Groups with f; > 77 are grouped pairwise until 7y < 77 or Q < R:

i max jef1,n,] 4, d; ri ‘ fi

11 [5,6] 50 0.53 0.79 | 0.42
12 [7,8] 45 0.53 0.77 | 0.41
13 [9,10] 41 0.53 0.76 | 0.40

Groups 5 and 6, 7 and 8, and 9 and 10 are grouped into groups 11, 12, and 13.

Let’s consider that at time #’ > ¢, group 11 starts running, thus Q =2 < R = 3.
Eq. 6.3 gives . = 0.6. As i, > 7. = 0.5, the activity is consider too coarse and task de-grouping

is triggered. Then, group 13 is de-grouped to reduce 7.

Table 6.1: Example

6.3. Experiments and Results 103

6.3 Experiments and Results

The experiments presented hereafter evaluate, in a production environment, the fineness control
process under stationary load, and the interest of controlling coarseness under non-stationary
load.

6.3.1 Experiment Conditions

The granularity control process was implemented as a plugin of the MOTEUR workflow man-
ager, receiving notifications about task status changes and task phase durations. The plugin
then uses this data to group and de-group tasks according to Algorithm 5, where the timeout
value is set to 2 minutes.

The target computing platform for these experiments is the biomed VO of EGI used by VIP
(see Section 2.2.5 in Chapter 2). To ensure resource limitation without flooding the production
system, experiments are performed only on 3 sites of different countries. Tasks generated by
MOTEUR are submitted to EGI using the DIRAC scheduler. As no online task modification is
possible in DIRAC, we implemented task grouping by canceling queued tasks and submitting
grouped tasks as a new task.

Three workflow activities, implementing different kinds of medical image simulation, are
used in the experiments: SimuBloch, FIELD-II, and PET-Sorteo/emission (see description
in Appendix A). Table 6.2 shows their main characteristics.

Workflow activity #Tasks CPU time Input Output 7 guarea/T
SimuBloch (data-intensive) 25 few seconds ~I15MB <5MB ~0.9
FIELD-II (data-intensive) 122 few seconds to 15 minutes ~208 MB ~40KB [0.4,0.6]
PET-Sorteo (CPU-intensive) 80 ~10 minutes ~20MB ~50MB [0.5,0.8]

Table 6.2: Workflow activity characteristics.

Two sets of experiments are conducted, under different load patterns. Experiment 1 eval-
uates the fineness control process only under stationary load. It consists of separated execu-
tions of SimuBloch, FIELD-II, and PET-Sorteo/emission. A workflow activity using our
task grouping mechanism (Fineness) is compared to a control activity (No-Granularity).
Resource contention on the 3 execution sites is maintained high and constant so that no de-
grouping is required.

Experiment 2 evaluates the interest of using the de-grouping control process under non-
stationary load. It uses activity FIELD-II. An execution using both fineness and coarse-
ness control (Fineness-Coarseness) is compared to an execution without coarseness control
(Fineness) and to a control execution (No-Granularity). Executions are started under re-

source contention, but the contention is progressively reduced during the experiment. This is

104 Optimizing task granularity Chap. 6

done by submitting a heavy workflow before the experiment starts, and canceling it when half
of the control tasks are completed.

For both experiments, workflow activities executions are launched simultaneously to
ensure similar grid conditions. For each grouped task resubmitted in the Fineness or
Fineness-Coarseness executions, a task in the No-Granularity is resubmitted too to en-
sure equal race conditions for resource allocation. Five repetitions of each experiment are per-
formed, along a time period of 4 weeks to cover different grid conditions. We use MOTEUR
0.9.21, configured to resubmit failed tasks up to 5 times, and with the task replication mech-
anism (Median Estimation) described in Chapter 5 activated. We use the DIRAC v6r6p2
instance provided by France-Grilles (see Section 2.2.4 in Chapter 2). Results could not be
compared to other grouping/de-grouping methods due to the lack of non-clairvoyant, online
method available in the literature.

6.3.2 Results and Discussion

Experiment 1. Figure 6.2 shows the makespan of SimuBloch, FIELD-II, and
PET-Sorteo/emission executions. Fineness yields a significant makespan reduction for
all repetitions. Table 6.3 shows the makespan (M) values and the number of task groups.
The task grouping mechanism is not able to group all SimuBloch tasks in a single group be-
cause 2 tasks must be completed for the process to have enough information about the appli-
cation (i.e. 7 gueq and 7 can be computed). This is a constraint of our non-clairvoyant condi-
tions, where task durations cannot be determined in advance. FIELD-IT tasks are initially not
grouped, but as the queuing time becomes important, tasks are considered too fine and grouped.
PET-Sorteo/emission is an intermediary case where only a few tasks are grouped. Results
show that the task grouping mechanism speeds up SimuBloch and FIELD-II executions up to
a factor of 2.6, and PET-Sorteo/emission executions up to a factor of 2.5.

Experiment 2. Figure 6.3 shows the makespan (top) and evolution of task groups (bottom).
Makespan values are reported in Table 6.4. In the first three repetitions, resources emerge
progressively during workflow executions. Fineness and Fineness-Coarseness speed up
executions up to a factor of 1.5 and 2.1. Since Fineness does not benefit of newly arrived
resources, it has a lower speed up compared to No-Granularity due to parallelism loss. In the
two last repetitions, the de-grouping process in Fineness-Coarseness allows to reach similar
performance than No-Granularity, while Fineness is penalized by its lack of adaptation: a
slowdown of 20% is observed compared to No-Granularity.

Our task granularity control process works best under high resource contention, when the
amount of available resources is stable or decreases over time (Experiment 1). Coarseness
control can cope with soft increases in the number of available resources (Experiment 2), but

fast variations remain difficult to handle. In the worst-case scenario, tasks are first grouped due

6.4. Conclusion 105

SimuBloch FIELD-II PET-Sorteo/emission
10000 =

7500 =
5000 =

- I I I I I
0_I . H . . - . H =
I I I I I I I I I I I I I

I I
Runl Run2 Run3 Run4 Run5 Runl Run2 Run3 Run4 Run5 Runl Run2 Run3 Run4 Runb5

Makespan (s)

. Fineness No-Granularity

Figure 6.2: Experiment 1: makespan for Fineness and No-Granularity executions for

the 3 workflow activities under stationary load.

SimuBloch FIELD-II PET-Sorteo
M (s) Groups M (s) Groups M (s) Groups
1 No-Granularity 5421 25 10230 122 873 80
Fineness 2118 3 5749 80 451 57
5 No-Granularity 3138 25 7734 122 2695 80
Fineness 1803 3 2982 75 1766 40
3 No-Granularity 1831 25 9407 122 1983 80
Fineness 780 4 4894 73 1047 53
4 No-Granularity 1737 25 6026 122 552 80
Fineness 797 6 3507 61 218 64
5 No-Granularity 3257 25 4865 122 1033 80
Fineness 1468 4 3641 91 831 71

Table 6.3: Experiment 1: makespan (M) and number of task groups for SimuBloch,
FIELD-IT and PET-Sorteo/emission executions for the 5 repetitions.

to resource limitation, and resources suddenly appear once all task groups are already running.
In this case the de-grouping algorithm has no group to handle, and granularity control penalizes
the execution. Task pre-emption should be added to the method to address this scenario.

6.4 Conclusion

We presented a method to optimize task granularity in distributed workflows in an online and
non-clairvoyant environment. We defined a metric 7, for online determination of task fineness
based on queue waiting time and estimated data transfer time of shared input data. For high n,
values, tasks are considered too fine and task grouping is triggered. Queued tasks are grouped

pairwise as long as the number of queued tasks is greater than the number of running tasks and

106 Optimizing task granularity Chap. 6

6000 =

4000 = . Fineness
. Fineness—Coarseness
2000 - No-Granularity
O -
1 1 1 1 1

Run 1 Run 2 Run 3 Run 4 Run 5

Makespan (s)

Task groups

©
=}
1
1

= - === ===

1 1 1 1 1 1 1 1 [1 1 1 1 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 0 2000 4000 60000 2000 4000 6000 0 1000 2000 3000 0 10002000300040005000
Time (s)

— Fineness = ' Fineness—Coarseness - * * No-Granularity

Figure 6.3: Experiment 2: makespan (top) and evolution of task groups (bottom) for

FIELD-II executions under non-stationary load (resources arrive during the experiment).

Run 1 Run 2 Run 3 Run 4 Run 5

M(s) g@G)|M(s) g()|M(s) g(s) | M(s) q(s)|M(s) g(s)
No-Granularity 4617 2111 | 5934 2765 | 6940 3855 | 3199 1863 | 4147 2295
Fineness 3892 2036 | 4607 2090 | 4602 2631 | 3567 1928 | 5247 2326
Fineness-Coarseness 2927 1708 | 3335 1829 | 3247 2091 | 2952 1586 | 4073 2197

Table 6.4: Experiment 2: makespan (M) and average queuing time (g) for FIELD-IT work-

flow execution for the 5 repetitions.

1y is considered too fine. We also define a metric 7. for online determination of task coarseness
based on the ratio of the number of queued tasks related to the number of running tasks. This
metric aims at maximizing resource exploitation by de-grouping tasks groups when the number

of available resources increases.

The task granularity control strategy was implemented in the MOTEUR workflow engine
and deployed on EGI with the DIRAC resource manager. We tested it on three applications
extracted from the Virtual Imaging Platform (Chapter 2). Two experiments were conducted, to
evaluate the fineness control process only under stationary load and the fineness and coarse-
ness control process under non-stationary load. Results showed that under stationary load,
our fineness control process significantly reduces the makespan of all applications. Under

non-stationary load, task grouping is penalized by its lack of adaptation, but our de-grouping

6.4. Conclusion 107

algorithm corrects it in case variations in the number of available resources are not too fast.
So far we have handled incidents up to the activity level. In the next chapter, we present
a healing process to cope with an incident at the platform level: unfairness among workflow

executions.

108 Optimizing task granularity Chap. 6

Chapter 7

Controlling fairness among
workflow executions

Contents
7.1 Introduction
7.2 Fairness control process
7.3 Experiments and results

7.3.1 Experiment conditions . . .
7.3.2 Results and discussion . . .

74 Conclusion

airly allocating distributed computing re-
F sources among workflow executions is crit-
ical to multi-user platforms. However, this prob-
lem remains mostly studied in clairvoyant and
offline conditions, where task durations on re-
sources are known, or the workload and avail-
able resources do not vary along time. We con-
sider a non-clairvoyant, online fairness prob-
lem where the platform workload, task costs and
resource characteristics are unknown and not

stationary. We propose a fairness control loop

which assigns task priorities based on the frac-
Work-

flow characteristics and performance on the tar-

tion of pending work in the workflows.

get resources are estimated progressively, as in-
formation becomes available during the execu-
tion. Our method is implemented and evaluated
on 4 different applications executed in produc-
tion conditions on the European Grid Infrastruc-
ture. Results show that our technique reduces
slowdown variability by a factor of 3 to 7 com-

pared to first-come-first-served.

110 Controlling fairness among workflow executions

Chap. 7

épartir équitablement les ressources de
R calcul entre les exécutions de work-
flow est essentiel pour des plate-formes multi-
utilisateurs. Toutefois, ce probleme reste exclu-
sivement étudié dans des conditions de clairvoy-
ance et « offline » , o la durée des taches sur
les ressources sont connues, et ol les ressources
disponibles et la charge de travail ne varie pas
au cours du temps. Nous considérons un prob-
leme d’équité non-clairvoyant et « online » ou
les caractéristiques de charge de travail de la

plate-forme, les caractéristiques de ressources,

tionnaires. Nous proposons une boucle de con-
trole de I’équité qui assigne les priorités des
tdches en fonction de la proportion de calcul en
cour d’exécution dans leur workflow. Les carac-
téristiques et les performances des workflows sur
les ressources cibles sont estimés progressive-
ment, au fin et a mesure que l’information devient
disponible. Notre méthode est mise en ceuvre et
évaluée sur 4 différentes applications exécutées
dans des conditions de production sur EGI. Les
résultats montrent que notre technique permet de

réduire la variabilité du ralentissement d’un fac-

et les coiits de tdches sont inconnus et non sta- tor de 3 a 7 par rapport au FCFS.

7.1 Introduction

The problem of fairly allocating computing resources to application workflows rapidly arises on
shared computing platforms such as grids or clouds. It must be addressed whenever the demand
for resources is higher than the offer, that is, when some workflows are slowed down by con-
current executions. In some cases, unfairness makes the platform totally unusable, for instance
when very short executions are launched concurrently with longer ones. We define fairness
as in [N’Takpe and Suter, 2009, Zhao and Sakellariou, 2006, Casanova et al., 2010], i.e. as the

variability in a set of workflows of the slowdown %, where M,,,;;; is the makespan when

concurrent executions are present, and M,,,, is the maoknz:span without concurrent executions.

We consider a science-gateway where users can, at any time, launch application workflows
that will compete for computing resources. Our two main assumptions are that the problem is
online and non-clairvoyant. We also assume a limited control on the scheduler, i.e. that only
task priorities can be changed to influence scheduling.

In this chapter, we propose an algorithm to control fairness in these conditions. Based
on a progressive discovery of applications’ characteristics on the infrastructure, our method
dynamically estimates the fraction of pending work for each workflow. Task priorities are
then adjusted to harmonize this fraction among the active workflows. This way, resources are
allocated to application workflows relatively to their amount of work to compute. The method
is implemented in VIP, and evaluated with different workflows, in production conditions, on
the EGI. We use the slowdown as a post-mortem metric, to evaluate our method once execution
times are known.

The next section details our fairness control process, and section 7.3 presents experiments

7.2. Fairness control process 111

and results. Section 7.4 concludes the chapter.

7.2 Fairness control process

Workflows consist of linked activities spawning tasks for which the executable and input data
are known, but the computational cost and produced data volume are not. Algorithm 7 summa-
rizes our fairness control process. Fairness is controlled by allocating resources to workflows
according to their fraction of pending work. It is done by reprioritising tasks in workflows
where the unfairness degree 7, is greater than a threshold 7,,. This section describes how 7, and

7, are computed, and details the re-prioritization algorithm.

Algorithm 7 Main loop for fairness control

1: input: m workflow executions

2: while there is an active workflow do

3: wait for timeout or task status change in any workflow
determine unfairness degree 7,
if n, >7, then

end if

4
5
6: re-prioritize tasks using Algorithm 8
7
8: end while

Unfairness degree n7,. Let m be the number of workflows with an active activity; a workflow
activity is active if it has at least one waiting (queued) or running task. The unfairness degree
1, 1s the maximum difference between the fractions of pending work:

Nu = Winax = Wain, (7.1)
with Wi = min{W;,i € [1,m]} and W« = max{W;,i € [1,m]}. All W, are in [0, 1]. For

1. = 0, we consider that resources are fairly distributed among all workflows; otherwise, some
workflows consume more resources than they should. The fraction of pending work W; of a
workflow i € [1,m] is defined from the fraction of pending work w; ; of its n; active activities:

Wi = max](w,-’j) (72)

JEll,n;

All w; ; are between 0 and 1. A high w; ; value indicates that the activity has a lot of pending

work compared to the others. We define w; ; as:
Qi
wij = ———— " Tij
Qij+ RijPi;

where Q; ; is the number of waiting tasks in the activity, R; ; is the number of running tasks in

(7.3)

the activity, P; ; is the performance of the activity, and T; ; is its relative observed duration. T ;

112 Controlling fairness among workflow executions Chap. 7

is defined as the ratio between the median duration #; ; of the completed tasks in activity j and

the maximum median task duration among all active activities of all running workflows:

i;’j
T;; = = (7.4)
I‘naXVE[l ,m],well ,nf] (tv,w)

Tasks of an activity all consist of the following successive phases: setup, inputs download,
application execution and outputs upload; 7#;; is computed as 7;; = ff"/.’“” + ?l.'"j”m
. Medians are progressively estimated as tasks complete. At the beginning of the

+
e
execution, T;; is initialized to 1 and all medians are undefined; when two tasks of activity j
complete, 7;; is updated and T ; is computed with equation 7.4. In this equation, the max
operator is computed only on n; < n; activities with at least 2 completed tasks, i.e. for which 7; ;
can be determined. We are aware that using the median may be inaccurate. However, without a
model of the applications’ execution time, we must rely on observed task durations. Using the
whole time distribution (or at least its few first moments) may be more accurate but it would
complexify the method.

In Equation 7.3, the performance P;; of an activity varies between 0 and 1. A low P;;
indicates that resources allocated to the activity have bad performance for the activity; in this
case, the contribution of running tasks is reduced and w;; increases. Conversely, a high P; ;
increases the contribution of running tasks, therefore decreases w; ;. For an activity j with k;

active tasks, we define P; ; as:

lLl
Pi,j:Z-(l— max {~ }) (7.5)
u€l1,k;j] ti,j +1,

where t, = ;"7 + 1,7 + 1% + £,"""" is the sum of the estimated durations of task u’s phases.

Estimated task phase durations are computed as the max between the current elapsed time in
the task phase (O if the task phase has not started) and the median duration of the task phase
(see Section 5.3 in Chapter 5). P; ; is initialized to 1, and updated using Equation 7.5 only when
at least 2 tasks of activity j are completed. Note that computing P; ; is equivalent to computing
the complement of the activity blocked degree by median estimation 1 — 7, for activity j of

workflow i (see Section 5.3 in Chapter 5).

If all tasks perform as the median, i.e. #, = f;, then max,e[1 4] {f ’+ - } =05and P;; = 1.
’ / ij T lu ’
ij» then
ty

Max,ef1 k] {fi.,-+tu} ~ 1 and P;; ~ 0. This definition of P;;, considers that bad performance

Conversely, if a task in the activity is much longer than the median, i.e. ¢, > f

results in a few tasks blocking the activity. Indeed, we assume that the scheduler does not
deliberately favor any activity and that performance discrepancies are manifested by a few
“unlucky” tasks slowed down by bad resources. Performance, in this case, has a relative defi-
nition: depending on the activity profile, it can correspond to CPU, RAM, network bandwidth,
latency, or a combination of those. We admit that this definition of P; ; is a bit rough. How-

ever, under our non-clairvoyance assumption, estimating resource performance for the activity

7.2. Fairness control process 113

more accurately is hardly possible because (i) we have no model of the application, therefore
task durations cannot be predicted from CPU, RAM or network characteristics, and (ii) net-
work characteristics and even available RAM are shared among concurrent tasks running on

the infrastructure, which makes them hardly measurable.

Thresholding unfairness: 7,. Task prioritization is triggered when the unfairness degree is
considered critical, i.e 7, > 7,. We inspect the modes of the distribution of 7, to determine a
threshold with a practical justification: values of 1, in the highest mode of the distribution, i.e.
which are clearly separated from the others, will be considered unfair. The distribution of 7, is
measured from traces collected from VIP (Chapter 3).

Figure 7.1 shows the histogram of these values, where only 1, # 0 values are represented.
This histogram is clearly bi-modal, which is a good property since it reduces the influence of

7,. From this histogram, we choose 7, = 0.2. For n, > 0.2, task prioritization is triggered.

2 _
5 3
3 o
o © _|
L
o
Q _ =
8 [I I I I 1
0.0 0.2 0.4 0.6 0.8 1.0
Nu

Figure 7.1: Histogram of the unfairness degree 77, sampled in bins of 0.05.

Task prioritization. Task priority is an integer initialized to 1. The action taken to cope with
unfairness is to increase the priority of A; ; waiting tasks for all activities j of workflow i where
Wi j= Whin > 7,. Running tasks cannot be pre-empted. A; ; is determined so that w; ; = W, +7,,

where W, ; is the estimated value of w; ; after A, ; tasks are prioritized. We approximate w; ; as:

P = Qij—Aij 7
Y Qi+ RiPy
which assumes that A; ; tasks will move from status queued to running, and that the performance

of new resources will be maximal. It gives:

(tu + Wnin)(Qij + R jP; j)

7.6
T, (7.6)

Aij=0Qij—

114 Controlling fairness among workflow executions Chap. 7

where | | rounds a decimal down to the nearest integer value.

Algorithm 8 describes our task re-prioritization. maxPriority is the maximal priority value
in all workflows. The priority of A, ; waiting tasks is set to maxPriority+1 in all activities j of
workflows i where w; ; — W,,;, > 7,,. Note that this algorithm takes into account scatter among

W; although 7, ignores it (see Equation 7.1). Indeed, tasks are re-prioritized in any workflow i
for which W; — W, > 7.

Algorithm 8 Task re-prioritization

1: input: W, to W,, //fractions of pending works
2: maxPriority = max task priority in all workflows
3: for i=1 to m do

4: if W; — Wpin > 7, then

5: for j=1 to a; do

6: //a; is the number of active activities in workflow i
7: if w; j — Wpin > 7, then

8: Compute A, ; from equation 7.6

9: for p=1to A;; do

10: if 3 waiting task q in activity j with priority < maxPriority then
11: g.priority = maxPriority + 1

12: end if

13: end for

14: end if

15: end for

16: endif

17: end for

The method also accommodates online conditions. If a new workflow i is submitted, then
R;; = 0 for all its activities and Ti, ; 1s initialized to 1. This leads to W, = W; = 1, which
increases 7. If n, goes beyond 7, then A, ; tasks of activity j of workflow i have their priorities
increased to restore fairness. Similarly, if new resources arrive, then R;; increase and 7, is
updated accordingly. Table 7.1 illustrates the method on a simple example.

7.3 Experiments and results

Experiments are performed on a production grid platform to ensure realistic conditions. Eval-
uating fairness in production by measuring the slowdown is not straightforward because M,,,,
(see definition in the Introduction) cannot be directly measured. As described in Section 7.3.1,
we estimate the slowdown from task durations, but this estimation may be challenged. Thus,
Experiment 1 evaluates our method on a set of identical workflows, where the variability of the
measured makespan can be used as a fairness metric. In Experiment 2, we add a very short

workflow to this set of identical workflow, which was one of the configurations motivating this

7.3. Experiments and results 115

Let’s consider two identical workflows composed of one activity with 6 tasks,
and assume the following values at time ¢:

i ‘ Qi1 Ry Ty ‘ Py Tiy ‘ Wi =wiy

1 1 3 10|09 1.0 0.27

2 6 0O -]10 10 1.00

Values unknown at time ¢ are noted ’-’. Workflow 1 has 2 completed and 3 running tasks
with the following phase durations (in arbitrary time units):

setup input exec output
I L Iy Iy Iy

u u

12 2 4 1

2001 2 3 2 |38 We have 7" = 2, " = 2, % = 4 and
302 3 s . |7 {7 = 2. Therefore, 71, = 10.

41 2 2 - - |-

sl - - - |-

The configuration is clearly unfair since workflow 2 has 0 started tasks.
Eq. 7.1 gives i, = 0.73. As i, > 1, = 0.2, the platform is considered unfair and task
re-prioritization is triggered.

A, tasks from workflow 2 should be prioritized. According to Eq. 7.6:

Wt W R 1 P> 0.2+0.27)(6+0-1.0
Apy = Qo — I.(T + 1)(QT2;]+ 2.1 ,1)J =6— L(+ l)(() +)J -4

i ‘ Qi1 Riy i ‘ Pii Tiy ‘ Wi = wiy
Attimet > 1 1 3 10| 08 1.0
2 2 4 -]10 1.0

Now, 17, = 0.04 < 7,,. The platform is considered fair and no action is performed.
Table 7.1: Example

study. Finally, Experiment 3 considers the more general case of 4 different workflows with

heterogeneous durations.

7.3.1 Experiment conditions

Fairness control was implemented as a MOTEUR plugin receiving notifications about task and
workflow status changes. Each workflow plugin forwards task status changes and 7; ; values to a
service centralizing information about all the active workflows. This service then re-prioritizes
tasks according to Algorithms 7 and 8. The timeout value used in Algorithm 7 is set to 3 min-
utes. As no online task modification is possible in DIRAC, we implemented task prioritization
by canceling and resubmitting queued tasks to DIRAC with new priorities.

The computing platform for these experiments is the biomed VO (see Section 2.2.5 in Chap-

ter 2). To ensure resource limitation without flooding the production system, experiments are

116 Controlling fairness among workflow executions Chap. 7

performed only on 3 sites of different countries (France, Spain and Netherlands). Four real
medical simulation workflows are considered: GATE, SimuBloch, FIELD-II, and PET-Sorteo

(see description in Appendix A). Table 7.2 shows their main characteristics.

Workflow #Tasks CPU time Input Output
GATE (CPU-intensive) 100 few minutes to one hour ~115MB ~40 MB
SimuBloch (data-intensive) 25 few seconds ~I15MB <5MB
FIELD-II (data-intensive) 122 few seconds to 15 minutes ~208 MB ~40 KB
PET-Sorteo (CPU-intensive) 1—80—1—-80—1—1 ~10 minutes ~20MB ~50MB

Table 7.2: Workflow characteristics (— indicate task dependencies).

Three experiments are conducted. Experiment 1 tests whether unfairness among identical
workflows 1s properly addressed. It consists of three GATE workflows sequentially submitted.
Experiment 2 tests if the performance of very short workflow executions is improved by the fair-
ness mechanism. Its workflow set has three GATE workflows launched sequentially, followed
by a SimuBloch workflow. Experiment 3 tests whether unfairness among different workflows is
detected and properly handled. Its workflow set consists of a GATE, a FIELD-II, a PET-Sorteo
and a SimuBloch workflow launched sequentially.

For each experiment, a workflow set using our fairness mechanism (Fairness — F) is com-
pared to a control workflow set (No-Fairness — NF). No method from the literature could
be included in the comparison because, as mentioned in Section 1.2.4 (Chapter 1), they are
either non-clairvoyant or offline. Fairness and No-Fairness are launched simultaneously
to ensure similar grid conditions. For each task priority increase in the Fairness workflow
set, a task in the No-Fairness workflow set task queue is also prioritized to ensure equal race
conditions for resource allocation. Four repetitions of each experiment are done, along a time
period of four weeks to cover different grid conditions. We use MOTEUR 0.9.21, configured to
resubmit failed tasks up to 5 times, and with the task replication mechanism described in Sec-
tion 5.3 (Chapter 5) activated. We use the DIRAC v6r5p1 instance provided by France-Grilles
(Section 2.2.4 in Chapter 2), with a first-come, first-served policy imposed by submitting work-
flows with decreasing priority values.

Two different fairness metrics are used. The unfairness u is the area under the curve 7,

during the execution:

M
n= Znu(ti) <(t = tioy),
i=2

where M is the number of time samples until the makespan. This metric measures if the fairness
process can indeed minimize its own criterion 7,,. In addition, the slowdown s of a completed

workflow execution is measured as:

7.3. Experiments and results 117

Mmulli
M()Wl’l
where M,,,;;; is the makespan observed on the shared platform, and M,,, is the estimated

makespan if it was executed alone on the platform. In our conditions, M,,,, is estimated as:

M,,, = max Z Ly,

cQ
P uep

where Q is the set of task paths in the workflow, and 7, is the measured duration of task u.
This assumes that concurrent executions only impact task waiting time. For instance, network
congestion or changes in performance distribution resulting from concurrent executions are
ignored. We use o, the standard deviation of the slowdown to quantify unfairness. In Experi-
ment 1, the standard deviation of the makespan (o) is also used.

7.3.2 Results and discussion

Experiment 1 (identical workflows). Figure 7.2 shows the makespan, unfairness degree 17,,
makespan standard deviation o,, slowdown standard deviation oy and unfairness u for the 4
repetitions. The difference among makespans and unfairness degree values are significantly
reduced in all repetitions of Fairness. Both Fairness and No-Fairness behave similarly
until 7, reaches the threshold value 7, = 0.2. Unfairness is then detected and the mechanism
triggers task prioritization. Paradoxically, the first effect of task prioritization is a slight in-

crease of n,. Indeed, P;; and T ;, that are initialized to 1, start changing earlier in Fairness

5J?
than in No-Fairness due to the availability of task duration values to compute 7; ;. Note that
n, reaches similar maximal values in both cases, but reaches them faster in Fairness. The
fairness mechanism then manages to decrease 7, back under 0.2 much faster than it happens in
No-Fairness when tasks progressively complete. Finally, slight increases of 7, are sporadi-
cally observed towards the end of the execution. This is due to task replications performed by
MOTEUR (see Section 5.3 in Chapter 5): when new tasks are created, the fraction of pending
work work W increases, which has an effect on 7,. Quantitatively, the fairness mechanism

reduces o, up to a factor of 15, o up to a factor of 7, and u by about 2.

Experiment 2 (very short execution). Figure 7.3 shows the makespan, unfairness degree
N4, unfairness u and slowdown standard deviation. In all cases, the makespan of the very
short SimuBloch executions is significantly reduced for Fairness. The evolution of n, is
coherent with Experiment 1: a common initialization phase followed by an anticipated growth
and decrease for Fairness. Fairness reduces o, up to a factor of 5.9 and unfairness up to a
factor of 1.9.

Table 7.3 shows the execution makespan (m), average wait time (w) and slowdown () val-

ues for the SimuBloch execution launched after the 3 GATE. As it is a non-clairvoyant scenario

118 Controlling fairness among workflow executions Chap. 7

Repetition 1 Repetition 2 Repetition 3 Repetition 4

30000 =

20000 - B cate 1
. Gate 2
10000 =
Gate 3
1 1 1 1 1 1

O_
I I
Fairness No-Fairness Fairness No-Fairness Fairness No-Fairness

Makespan (s)

Fairness No-Fairness

Repetition 1 Repetition 2 Repetition 3 Repetition 4

i
i
-

Fairness
- -+ No-Fairness

fairriiiiiairaaias

s e rres =

J
15
)

11 1 1 1 1 1 1 1 1 1
0 10000 20000 300000 5000 10000 150002000® 10000 20000 30000 O 500010000500@000@5000
Time (s)

Repetition 1 Repetition 2 Repetition 3 Repetition 4
\crm(S)\ o5 | ps) ‘(rm(s)‘ o | u(s) ‘O'm(s)‘ os | uls) ‘O'm(s)‘ o5 | uls)
NF | 4666|1.03|8758 NF| 2541|0.50 |4154 NF| 5791|2.10|13392 NF| 1567 |0.87 | 12283
F | 1884]0.40(5292 F 167]0.07|2367 F | 2007|0.84| 7243 F 706|0.24 | 6070

Figure 7.2: Experiment 1 (identical workflows). Top: comparison of the makespans; mid-
dle: unfairness degree 7,; bottom: makespan standard deviation o, slowdown standard

deviation o5 and unfairness .

where no information about task execution time and future task submission is known, the fair-
ness mechanism is not able to give higher priorities to SimuBloch tasks in advance. Despite
that, the fairness mechanism speeds up SimuBloch executions up to a factor of 2.9, reduces

task average wait time up to factor of 4.4 and reduces slowdown up to a factor of 5.9.

Experiment 3 (different workflows). Figure 7.4 shows slowdown, unfairness degree, unfair-
ness i and slowdown standard deviation o for the 4 repetitions. Fairness slows down GATE
while it speeds up all other workflows. This is because GATE is the longest and the first to
be submitted; in No-Fairness, it is favored by resource allocation to the detriment of other
workflows. The evolution of 7, is similar to Experiments 1 and 2. o is reduced up to a factor
of 3.8 and unfairness up to a factor of 1.9.

In all 3 experiments, fairness optimization takes time to begin because the method needs
to acquire information about the applications which are totally unknown when a workflow is
launched. We could think of reducing the time of this information-collecting phase, e.g. by
designing initialization strategies maximizing information discovery, but it could not be totally
removed. Currently, the method works best for applications with a lot of short tasks because the

first few tasks can be used for initialization, and optimization can be exploited for the remaining

7.4. Conclusion 119

Repetition 1 Repetition 2 Repetition 3 Repetition 4
60000 =
w
£ 40000 — . Gate 1
§ . Gate 2
?‘Eu 20000 — Gate 3
SimuBloch
O -
1 1 1 1 1 1 1 1
Fairness No-Fairness Fairness No-Fairness Fairness No-Fairness Fairness No-Fairness
Repetition 1 Repetition 2 Repetition 3 Repetition 4
1.00 = [@m==n e, ! T T [
' 17, ! o ' "oy LR) "
P s A ! & : 1 :
0.75 = | : N :,\"' H) l- ; 3 .
- Pl - R 11 o v .
< 0.50 = { : v Breut 1d Y " Fairness
| " s i —: \ [b - — —
0.25 - | 4 '-_.‘_~ | ._5 | = | A : ! No-Fairness
W ’ ' |] 4] P AL N 5
i ’ 1 L s 1 ' [f "
0.00 = * 4 ety - - e - e] eyl / J.‘h‘i-'.'
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 10000 20000 30000 0 10000200003000040000 O 10000 20000 0 20000 40000 60000
Time (s)
Repetition 1 Repetition 2 Repetition 3 Repetition 4
| ov | us | o | | ov | us | o |
NF | 94.88 | 17269 NF | 100.05 | 16048 NF | 87.93 | 11331 NF | 213.60 | 28190
F 1595 | 9085 F 42.94 | 12543 F | 5762 | 7721 F 76.69 | 21355

Figure 7.3: Experiment 2 (very short execution). Top: comparison of the makespans;

middle: unfairness degree 7,; bottom: unfairness u and slowdown standard deviation.

tasks. The worst-case scenario is a configuration where the number of available resources stays
constant and equal to the number of tasks in the first submitted workflow: in this case, no
action could be taken until the first workflow completes, and the method would not do better

than first-come-first-served. Pre-emption of running tasks should be considered to address that.

7.4 Conclusion

We presented a method to address unfairness among workflow executions in an online and
non-clairvoyant environment. We defined a novel metric 1, quantifying unfairness based on
the fraction of pending work in a workflow. It compares workflow activities based on their
ratio of queuing tasks, their relative durations, and the performance of resources where tasks
are running. Performance is defined from the variability of task duration in the activity: good
performance is assumed to lead to homogeneous task durations. To separate fair configurations
from unfair ones, a threshold on 77, was determined from platform traces. Unfair configurations
are handled by increasing the priority of pending tasks in the least performing workflows. This
is done by estimating the number of running tasks that these workflows should have to bring 17,
under the threshold value.

The method was implemented in the MOTEUR workflow engine and deployed on EGI

120 Controlling fairness among workflow executions

Chap. 7

Run Type m (secs) w (secs) s
! No-Fairness 27854 18983 196.15
Fairness 9531 4313 38.43
5 No-Fairness 27784 19105 | 210.48
Fairness 13761 10538 94.25
3 No-Fairness 14432 13579 182.68
Fairness 9902 8145 122.25
4 No-Fairness 51664 47591 | 445.38
Fairness 38630 27795 165.79

Table 7.3: Experiment 2: SimuBloch’s makespan, average wait time and slowdown.

with the DIRAC resource manager. We tested it on four applications extracted from VIP. Three

experiments were conducted, to evaluate the capability of the method to improve fairness (i)

on identical workflows, (if) on workflow sets containing a very short execution and (iii) on

different workflows. In all cases, results showed that our method can very significantly reduce

the standard deviation of the slowdown, and the average value of our metric 7,,.

The study presented in this chapter is a step in our attempt to control computing platforms

where very little is known about applications and resources, and where situations change over

time. We believe that results of this chapter are the first ones presented to control fairness

in such conditions which are often met in production platforms. Future work could include

task pre-emption in the method, and evaluate more accurately the influence of the relative task

duration (7 ;) and of the performance factor (P, ;).

In the next chapter, we present general conclusions and highlight perspectives of this thesis.

7.4. Conclusion

121

Repetition 1 Repetition 2 Repetition 3 Repetition 4
< 100 -
g
E
o 10 -
l -
1 1 1 1 1 1 1 1
Fairness No-Fairness Fairness No-Fairness Fairness No-Fairness Fairness No-Fairness
Repetition 1 Repetition 2 Repetition 3 Repetition 4
- Sy s e
: AR :
in vy LA '
n] '
- i K 1
5 i :
- i
- 5 ¢ A
- I :
n VA E
n i a k
V4 :
~

0 5000 100001500020000 0O 10000 20000 0 20000 40000 0 50001000QL5000000
Time (s)
Repetition 1 Repetition 2 Repetition 3 Repetition 4
| o [u® L I0) 0] | o | u®
NF | 40.29 | 4443 NF | 192.58 | 4004 NF | 81.81 | 25173 NF | 11.61 | 6613
F 10.52 | 2689 F 58.83 | 2653 F | 60.56 | 18537 F 8.10 | 3303

B e
. Gate

. PET-Sorteo
SimuBloch

—— Fairness
==+ No-Fairness

Figure 7.4: Experiment 3 (different workflows). Top: comparison of the slowdown; middle:

unfairness degree 7,,; bottom: unfairness ¢ and slowdown standard deviation.

122 Controlling fairness among workflow executions Chap. 7

Part 111

CONCLUSIONS

Chapter 8

Conclusion and perspectives

Contents
8.1 ContributionssSumMmAary« v ¢« vt vt vt v v e b et e e e e 125
8.2 Concluding remarks and future directions 127

8.1 Contributions summary

In this manuscript, we addressed the autonomic management of workflow executions on sci-
ence gateways in an online and non-clairvoyant environment. In the first part of this thesis, we
introduced the design of a science gateway and its main components, and then we presented a
workload archive that provides fine-grained information about application executions. In the
second part, we introduced our general self-healing mechanism, based on the MAPE-K loop,
to cope with operational incidents of workflow executions. Then, we presented the application
of our self-healing method to seven simple incidents related to input and output data transfers
errors, and application execution errors. We also show the application of our method to han-
dle late task executions, task granularities, and unfairness among workflow executions. These

contributions are summarized hereafter:

Chapter 2: A science-gateway for workflow executions on grids. In this chapter, we intro-
duced the Virtual Imaging Platform (VIP), an openly-accessible online science-gateway for
medical imaging simulation, that provides access to distributed computing and storage re-
sources. The chapter provided a complete overview of VIP architecture for workflow execution
presenting employed methods and techniques. The platform currently has 441 registered users
from 49 countries who consumed 379 years of CPU time since January 2011. We also intro-
duced issues and limitations related to the execution infrastructure and to the adoption of robot

certificates. Manual interventions can still deliver fair quality of service, but it is expensive and

126 Conclusion and perspectives Chap. 8

affordable only for small production systems. VIP was the platform used in this manuscript for

the development and evaluation of our self-healing mechanism and its applications.

Chapter 3: A science-gateway workload archive. In this chapter, we presented a science-
gateway model of workload archive containing fine-grained information about users, pilot jobs,
task sub-steps, bag of tasks, and workflow executions. This level of information is not found
in common workload archives obtained at the infrastructure-level. The workload archive pro-
vides the historical information for our self-healing process. It is composed by traces collected
from the Virtual Imaging Platform in 2011/2012, which consist of 2,941 workflow executions,
339,545 pilot jobs, 680,988 tasks, and 112 users that consumed about 76 CPU years. Traces
are available to the community in the Grid Observatory. Results show that science-gateway
workload archives can detect workload wrapped in pilot jobs, improve user identification, give
information on distributions of data transfer times, make bag-of-task detection accurate, and

retrieve characteristics of workflow executions. Some limits are also identified.

Chapter 4: A self-healing process for workflow executions. In this chapter, we presented
our method for autonomous detection and handling of operational incidents on workflow ex-
ecutions. No strong assumption is made on the task duration or resource characteristics and
incident degrees are measured with metrics that can be computed online. We made the hypoth-
esis that incident degrees were quantified into distinct levels, and incident levels are associated
online to action sets. Action sets are selected based on the degree of their associated incident
level and on confidence of association rules determined from execution history. This method
is the basis for the incidents addressed in the remaining chapters. We also presented the appli-
cation of the self-healing method to seven simple incidents related to input and output transfer
errors, and application execution errors. Experimental results obtained in VIP show that the

proposed method properly detects and handles recoverable and unrecoverable errors.

Chapter 5: Handling blocked activities. In this chapter, we presented two methods to cope
with the long-tail effect incident. The first one identifies blocked activities by detecting de-
creases of the derivative along time of the number of completed tasks, and the second identifies
blocked activities as the ones whose tasks are performing worse than the median of already
completed tasks. Experimental results show that both methods properly detect blocked activi-
ties, speed up workflow executions up to a factor of 4.5, and reduce resource consumption up
to 35% and 75%, respectively. The second method is currently used in production by VIP, and

already healed more than 1,400 workflow executions since August 2012.

Chapter 6: Optimizing task granularity. In this chapter, we presented a method to optimize
task granularity in distributed workflow executions. We defined a metric for online determina-

tion of task fineness based on queue waiting time and estimated data transfer time of shared

8.2. Concluding remarks and future directions 127

input data, as well as a metric for online determination of task coarseness based on the ratio of
the number of queued tasks related to the number of running tasks. On one hand, task grouping
is triggered when resources are scarce and tasks are considered too fine. On the other hand,
task ungrouping is triggered when the number of available resources increases. Experimental
results, obtained with 3 workflow activities deployed on EGI, show that the grouping process
yields speed-ups of about 2.5 when the amount of available resources is constant and that the

use of de-grouping yields speed-ups of 2 when resources progressively appear.

Chapter 7: Controlling fairness among workflow executions. In this chapter, we presented
a method to address unfairness among workflow executions when the number of available re-
sources is scarce. We defined a metric to quantify unfairness based on the ratio of queuing
tasks, their relative durations, and the performance of resources where tasks are running. Per-
formance is defined from the variability of task duration in the activity: good performance is
assumed to lead to homogeneous task durations. Results show that our technique reduces slow-
down variability by a factor of 3 to 7 compared to first-come-first-served, and show that our
method quickly detects unfairness, and performs actions to fairly distribute the load among the

available resources.

8.2 Concluding remarks and future directions

The self-healing method proposed in this thesis demonstrated its effectiveness to handle opera-
tional incidents on workflow executions. The use of a MAPE-K loop is fundamental to achieve
a fair quality of service by using control loops that constantly perform online monitoring, anal-
ysis, and execution of a set of curative actions.

Although we showed the application of the self-healing method in a medical imaging
science-gateway using a grid infrastructure, the method is general enough to be used by
other platforms and infrastructures. For instance, in [Ferreira da Silva et al., 2013d] we use
a similar approach to estimate workflow task needs such as runtime, disk usage, and mem-
ory consumption, using a different workflow engine (Pegasus WMS [Deelman et al., 2005])
from the one used in this manuscript, a workflow from the astronomy field (Mon-
tage [Berriman et al., 2004]), and a cloud infrastructure.

Some limitations are also identified. For instance, the method needs to acquire information
about the applications which are completely unknown when a workflow is launched. In Chap-
ter 5, this limitation delays the decision to replicate a task; at least two tasks should be finished
to estimate the median durations of each phase. The same delay is observed in Chapter 6, where
tasks are grouped once an estimation of the duration is available. In Chapter 7, the relative ob-
served duration parameter also depends on task duration estimations, thus the metric does not

consider this parameter while the estimations are not available. One approach to circumvent

128 Conclusion and perspectives Chap. 8

this issue, could be to initialize such estimations according to observed distributions of these
values, adjusting the estimations along the workflow execution.

In Chapter 4, we also presented the main instances involved in a workflow execution of
a science-gateway. In this manuscript, we considered seven of these instances showed in Fig-
ure 4.1. Our self-healing method can be easily extended to handle other incidents from different
instances of a science-gateway, provided that they can be quantified online by a metric ranging
from O to 1, and they have an action set to handle the incident. For instance, a possible exten-
sion would be a method to address data management operational issues, such as data placement,
availability, and transfer. A control loop method could be used to constantly monitor data avail-
ability and the efficiency of transfer operations, to take decisions of whether to replicate a file,
or schedule a task to a specific resource.

In the remainder of this section, we present particular perspectives identified along the
development of this thesis. Some perspectives presented hereafter come from limitations of
our proposed methods, and some come from novel research directions inferred by the results

presented in this manuscript.

Mode detection automation. As presented in Chapter 4, incident degrees are quantified in
discrete incident levels separated by a threshold. We determine the threshold value of an inci-
dent degree by examining execution traces. In this manuscript, threshold are either determined
by visual mode clustering, or by using K-Means. In Section 4.4 of Chapter 4, we showed that
visual mode detection gives similar threshold values when compared to K-Means, and it gives
better classification when an incident does not happen exhaustively. However, visual mode
detection is affordable only when addressing a small number of incidents, and the historical
information is static. In an autonomic system, the historical information may be dynamic, so
that threshold values vary. Therefore, research directions arise in developing automated tech-
niques to automatically detect variation on threshold values, and update the autonomic system
accordingly. Besides, the technique should be computable online. For instance, a method to
automatic detect unimodal and bimodal thresholds on histograms of image segmentation was
proposed in [Ng, 2006]. The idea of the method is to select a threshold value that has a small
probability of occurrence, and also maximize the between group variance. This method could

be extended to detect multi-modal histograms.

Time-windowed historical information. Operational incidents addressed in this manuscript
were identified along the 16 months of the workflow executions trace presented in Chapter 3.
However, incidents may be time related, i.e. errors may be restricted to a specific time span.
For instance, a site may have low performance because of temporary network glitches; a soft-
ware update may introduce failures in the system, but once fixed the incident does not happen

again. Besides, user’s behavior may change, which can shift the system to different states.

8.2. Concluding remarks and future directions 129

Determining the size of the historical window to be used is a challenging research subject.
One approach could be to use machine learning techniques to learn user behaviors and re-
source characteristics, and derive models, so that the size of the window could be automatically
determined. Nonetheless, this solution is usually cumbersome and not applicable in produc-
tion [Kearns, 1990]. Another approach could be to analyze the histogram of incidents, attempt-

ing to detect the non-ocurrence of incidents.

Optimization of the incident selection method. In Section 4.2 of Chapter 4, we showed
that our self-healing method uses successive roulette wheel selections based on the degree of
an incident to select the one to be handled. We adopted this strategy due to its simplicity
and efficiency to be computed. However, there is no mechanism to prevent an incident to be
successively selected, thus the mechanism can be stalled trying to handle an incident while the
cause may be another incident. Markov chain with memory appears as an alternative to roulette
wheel selection. A Markov chain is a mathematical system that undergoes transitions from one
state to another, between a finite or countable number of possible states. In a Markov chain
with memory, predictions for future state transitions are dependent of past state transitions. In

this model, incidents are modeled as states, and transitions represent incident degrees.

Sensitivity analysis of parameters. Our metrics defined in Chapters 6 and 7, are composed
by several parameters, such as the median transfer time of shared input data and task queueing
time in the fineness control (Section 6.2.1), and the relative task duration and the performance
factor in the fairness control (Section 7.2). A sensitivity analysis would evaluate the influence

of such parameters on the metrics.

Workflow workload archive. Although the science-gateway workload archive model, pre-
sented in Chapter 3, gathers enough fine-grained information for the incidents addressed in the
chapters of the Part II of this manuscript, it still does not embrace all characteristics inherent
to a workflow execution. For instance, task and data dependencies are not modeled, as well as
the workflow structure itself. A repository of workflow workloads would be beneficial for both
infrastructure providers and researchers: infrastructure providers can use such information to
develop workload and user behavior models, while researchers may use to evaluate scheduling

algorithms, and develop task and workflow execution models for autonomic management.

130 Conclusion and perspectives Chap. 8

Part IV

APPENDIX

Appendix A

Applications description

In this appendix we describe the applications used in the experiments included in this
manuscript. Applications were extracted from the Virtual Imaging Platform (see Chapter 2).

A.1 FIELD-II

FIELD-II [Jensen and Svendsen, 1992] is a program for simulating ultrasound trans-
ducer fields and ultrasound imaging using linear acoustics. It consists of 3 activities:
ExecutionField, Merge, and ReconstructSectorial (Figure A.1). ExecutionField has
122 tasks which simulate the radio-frequency (RF) lines involved in the simulation. It is a data-
intensive activity where invocations use from a few seconds to some 15 minutes of CPU time on
resources of the biomed VO; it transfers 208 MB of input data and outputs about 40 KB of data;
the median transfer time of the input data shared among all tasks in the activity ranges from
40% to 60% of the execution time. Once all lines are simulated, an RF matrix is assembled by

the Merge activity, and the final image is reconstructed by activity ReconstructSectorial.

Merge {

ReconstructSectorial {

Figure A.1: FIELD-II workflow.

Experiments conducted in Chapters 4, 5, and 6 only consider the execution of the
ExecutionField activity, because the Merge and ReconstructSectorial activities consist
of a single task each, then incidents cannot be measured. Experiments performed in Chapter 7

consider the whole workflow execution.

134 Applications description Chap. A

A.2 Mean-Shift

Mean-Shift [Comaniciu and Meer, 2002] is an image processing technique used to implement
filtering, clustering, and segmentation in a d-dimensional space. It has 250 CPU-intensive tasks
of an image filtering application (Figure A.2). Task CPU time ranges from a few minutes up to
one hour; input data size is about 182 MB and output is less than 1 KB.

Zereensael Sesesnensd Geessssaad

Figure A.2: Mean-Shift workflow.

A.3 SimuBloch

The simulator SimuBloch [Cao et al., 2012] is made for a fast simulation of MRIs based on
Bloch equation. It is a very short activity made of 25 concurrent tasks (Figure A.3); task CPU
time is of a few seconds; input data size is about 15 MB and output is less than 5 MB; the
median transfer time of the input data shared among all tasks in the activity is about 90% of the

execution time.

Figure A.3: SimuBloch workflow.

A.4 PET-Sorteo

PET-Sorteo [Reilhac et al., 2005] is a Monte Carlo-based simulation platform designed to
generate realistic PET (positron emission tomography) images. It is implemented as a doubled-
diamond-shaped workflow (Figure A.4) where each fork pattern has 80 concurrent tasks. Tasks
from the activity Singles consume about 10 minutes of CPU time, while Emission tasks are
of about 2 CPU minutes; input data size is about 20 MB and output is about 50 MB; the median
transfer time of the input data shared among all tasks in the activity Emission ranges from
50% to 80% of the execution time.

Experiments conducted in Chapter 6 only consider the execution of the Emission activity,
because it is the only activity where the granularity of tasks are too fine. Experiments performed

in Chapter 7 consider the whole workflow execution.

A.5. GATE 135

Singles { x 80

Emission { x 80

Figure A.4: PET-Sorteo workflow.

A5 GATE

GATE [Jan et al., 2011] is a Geant4-based open-source software to perform nuclear medicine
simulations, especially for TEP and SPECT imaging, as well for radiation therapy. It consists
of 100 CPU-intensive tasks ranging from a few minutes up to one hour (Figure A.5). Each task
transfers about 115 MB of input data and outputs 40 MB of data. GATE is available in VIP
through the GateLab system [Camarasu-Pop et al., 2013].

Figure A.5: GATE workflow.

Experiments conducted in Chapter 7 does not consider the execution of the Merge activity,
because it is a very long data-intensive activity which leads to significant execution errors.
Cope with these errors are out of the scope of this thesis, and they are addressed in works such
as [Camarasu-Pop et al., 2013].

136 Bibliography

Bibliography

[fis, 2013] (2013). Paul Fishwick: Introduction to computer simulations. http://www.cise.
ufl.edu/~fishwick/introsim. Accessed: 07/16/2013.

[Agrawal et al., 1993] Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining Association
Rules between Sets of Items in Large Databases. pages 207-216.

[Altintas et al., 2004] Altintas, 1., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., and Mock,
S. (2004). Kepler: an extensible system for design and execution of scientific workflows.
In Scientific and Statistical Database Management, 2004. Proceedings. 16th International
Conference on, pages 423-424.

[Anderson, 2004] Anderson, D. P. (2004). Boinc: A system for public-resource computing and
storage. In Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
GRID ’04, pages 4-10, Washington, DC, USA. IEEE Computer Society.

[Ang et al., 2009] Ang, T., Ng, W., Ling, T., Por, L., and Liew, C. (2009). A bandwidth-
aware job grouping-based scheduling on grid environment. Information Technology Journal,
8:372-377.

[Arabnejad and Barbosa, 2012] Arabnejad, H. and Barbosa, J. (2012). Fairness resource shar-
ing for dynamic workflow scheduling on heterogeneous systems. In Parallel and Distributed

Processing with Applications (ISPA), 2012 IEEE 10th International Symposium on, pages
633 —639.

[Ardizzone et al., 2011] Ardizzone, V., Barbera, R., Calanducci, A., Fargetta, M., Ingra, E.,
La Rocca, G., Monforte, S., Pistagna, F., Rotondo, R., and Scardaci, D. (2011). A euro-
pean framework to build science gateways: architecture and use cases. In 2011 TeraGrid
Conference: Extreme Digital Discovery, pages 43:1-43:2, New York. ACM.

[Balderrama et al., 2012] Balderrama, J., Huu, T., and Montagnat, J. (2012). Scalable and
resilient workflow executions on production distributed computing infrastructures. In Par-
allel and Distributed Computing (ISPDC), 2012 11th International Symposium on, pages
119-126.

http://www.cise.ufl.edu/~fishwick/introsim
http://www.cise.ufl.edu/~fishwick/introsim

138 Bibliography

[Barbera et al., 2011] Barbera, R., Brasileiro, F., Bruno, R., Ciuffo, L., and Scardaci, D.
(2011). Supporting e-science applications on e-infrastructures: Some use cases from latin

america. In Grid Computing, Computer Communications and Networks, pages 33-55.

[Barbera et al., 2009] Barbera, R., Donvito, G., Falzone, A., La Rocca, G., Milanesi, L.,
Maggi, G., and Vicario, S. (2009). The genius grid portal and robot certificates: a new
tool for e-science. BMC Bioinformatics, 10(Suppl 6):S21.

[Basumallik et al., 2007] Basumallik, A., Zhao, L., Song, C. X., Sriver, R. L., and Huber, M.
(2007). A community climate system modeling portal for the teragrid. In Proceedings of
the TeraGrid 2007 Conference.

[Bell et al., 2003] Bell, W. H., Cameron, D. G., Carvajal-Schiaffino, R., Millar, A. P,
Stockinger, K., and Zini, F. (2003). Evaluation of an economy-based file replication strategy
for a data grid. In 3rd IEEE/ACM International Symposium on Cluster Computing and the
Grid, page 661.

[Ben-Yehuda et al., 2012] Ben-Yehuda, O., Schuster, A., Sharov, A., Silberstein, M., and Io-
sup, A. (2012). Expert: Pareto-efficient task replication on grids and a cloud. In Parallel
Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International, pages 167-178.

[Berriman et al., 2004] Berriman, G. B., Deelman, E., Good, J. C., Jacob, J. C., Katz, D. S.,
Kesselman, C., Laity, A. C., Prince, T. A., Singh, G., and Su, M.-H. (2004). Montage: a

grid-enabled engine for delivering custom science-grade mosaics on demand. 5493:221-
232.

[Brasileiro et al., 2011] Brasileiro, F., Gaudencio, M., Silva, R., Duarte, A., Carvalho, D.,
Scardaci, D., Ciuffo, L., Mayo, R., Hoeger, H., Stanton, M., Ramos, R., Barbera, R.,
Marechal, B., and Gavillet, P. (2011). Using a simple prioritisation mechanism to effec-

tively interoperate service and opportunistic grids in the eela-2 e-infrastructure. Journal of
Grid Computing, 9:241-257.

[Caan et al., 2012] Caan, M., Shahand, S., Vos, F., van Kampen, A., and Olabarriaga, S.
(2012). Evolution of grid-based services for diffusion tensor image analysis. Future Gen-
eration Computer Systems, 28(8):1194 — 1204. Including Special sections SS: Trusting
Software Behavior and SS: Economics of Computing Services.

[Camarasu-Pop et al., 2011] Camarasu-Pop, S., Glatard, T., Benoit-Cattin, H., and Sarrut, D.
(2011). Enabling Grids for GATE Monte-Carlo Radiation Therapy Simulations with the
GATE-Lab.

Bibliography 139

[Camarasu-Pop et al., 2013] Camarasu-Pop, S., Glatard, T., Ferreira da Silva, R., Gueth, P.,
Sarrut, D., and Benoit-Cattin, H. (2013). Monte carlo simulation on heterogeneous dis-
tributed systems: A computing framework with parallel merging and checkpointing strate-
gies. Future Generation Computer Systems, 29(3):728 — 738. Special Section: Recent
Developments in High Performance Computing and Security.

[Cao et al., 2012] Cao, F., Commowick, O., Bannier, E., FerrAl, J.-C., Edan, G., and Barillot,
C. (2012). Mri estimation of t1 relaxation time using a constrained optimization algorithm.
In Yap, P.-T., Liu, T., Shen, D., Westin, C.-F., and Shen, L., editors, Multimodal Brain Image
Analysis, volume 7509 of Lecture Notes in Computer Science, pages 203-214. Springer
Berlin Heidelberg.

[Cappello et al., 2005] Cappello, F., Le Mahec, G., Dayde, M., Desprez, F., Jegou, Y., Primet,
P., Jeannot, E., Lanteri, S., Leduc, J., Melab, N., Mornet, G., Namyst, R., Quetier, B., and
Richard, O. (2005). Grid’5000: a large scale and highly reconfigurable grid experimental
testbed. In Grid Computing, 2005. The 6th IEEE/ACM International Workshop on, pages 8

PpP.—

[Caron et al., 2002] Caron, E., Desprez, F., Lombard, F., Nicod, J.-M., Philippe, L., Quinson,
M., and Suter, F. (2002). A scalable approach to network enabled servers (research note). In
Proceedings of the 8th International Euro-Par Conference on Parallel Processing, Euro-Par
’02, pages 907-910, London, UK, UK. Springer-Verlag.

[Casanova, 2006] Casanova, H. (2006). On the harmfulness of redundant batch requests. In-
ternational Symposium on High-Performance Distributed Computing, 0:255-266.

[Casanova et al., 2010] Casanova, H., Desprez, F., and Suter, F. (2010). On cluster resource
allocation for multiple parallel task graphs. J. of Par. and Dist. Computing, 70(12):1193 —
1203.

[Chen et al., 2013] Chen, W., Ferreira da Silva, R. Deelman, E., and Sakellariou, R. (2013).
Balanced task clustering in scientific workflows. In e-Science 2013 9th IEEE International

Conference on, page to appear.

[Christodoulopoulos et al., 2008] Christodoulopoulos, K., Gkamas, V., and Varvarigos, E.
(2008). Statistical analysis and modeling of jobs in a grid environment. Journal of Grid
Computing, 6:77-101.

[Cirne et al., 2006] Cirne, W., Brasileiro, F., Andrade, N., Costa, L., Andrade, A., Novaes,
R., and Mowbray, M. (2006). Labs of the world, unite!!! Journal of Grid Computing,
4(3):225-246.

140 Bibliography

[Cirne et al., 2007] Cirne, W., Brasileiro, F., Paranhos, D., Goes, L., and Voorsluys, W. (2007).
On the Efficacy, Efficiency and Emergent Behavior of Task Replication in Large Distributed
Systems. Parallel Computing, 33:213-234.

[Comaniciu and Meer, 2002] Comaniciu, D. and Meer, P. (2002). Mean Shift: A Robust Ap-
proach Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 24(5):603-619.

[De Craene et al., 2013] De Craene, M., Marchesseau, S., Heyde, B., Gao, H., Alessandrini,
M., Bernard, O., Piella, G., Porras, A., Saloux, E., Tautz, L., Hennemuth, A., Prakosa,
A., Liebgott, H., Somphone, O., Allain, P., Ebeid, S., Delingette, H., Sermesant, M., and
D’hooge, J. (2013). 3d strain assessment in ultrasound (straus): A synthetic comparison of
five tracking methodologies. Medical Imaging, IEEE Transactions on, PP(99):1-1.

[De Jong, 1975] De Jong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic
Adaptive Systems. PhD thesis, University of Michigan, Ann Arbor, MI, USA. AAI7609381.

[Deelman et al., 2005] Deelman, E., Singh, G., hui Su, M., Blythe, J., Gil, Y., Kesselman, C.,
Mehta, G., Vahi, K., Berriman, G. B., Good, J., Laity, A., Jacob, J. C., and Katz, D. S.
(2005). Pegasus: a framework for mapping complex scientific workflows onto distributed

systems. Scientific Programming Journal, 13(3):219-237.

[Elghirani et al., 2008] Elghirani, A. H., Subrata, R., and Zomaya, A. Y. (2008). A proactive
non-cooperative game-theoretic framework for data replication in data grids. In 8th IEEE
International Symposium on Cluster Computing and the Grid (CCGRID), page 433.

[Ellert et al., 2007] Ellert, M., Grgnager, M., Konstantinov, A., Kénya, B., Lindemann, J.,
Livenson, I., Nielsen, J. L., Niinimiki, M., Smirnova, O., and Wéiininen, A. (2007). Ad-
vanced resource connector middleware for lightweight computational grids. Future Gener.
Comput. Syst., 23(2):219-240.

[Erwin, 2002] Erwin, D. W. (2002). Unicore—a grid computing environment. Concurrency
and Computation: Practice and Experience, 14(13-15):1395-1410.

[Fahringer et al., 2005a] Fahringer, T., Prodan, R., Duan, R., Nerieri, F., Podlipnig, S., Qin,
J., Siddiqui, M., Truong, H.-L., Villazon, A., and Wieczorek, M. (2005a). Askalon: A grid
application development and computing environment. In Proceedings of the 6th IEEE/ACM
International Workshop on Grid Computing, GRID °05, pages 122-131, Washington, DC,
USA. IEEE Computer Society.

[Fahringer et al., 2005b] Fahringer, T., Qin, J., and Hainzer, S. (2005b). Specification of grid

workflow applications with agwl: an abstract grid workflow language. In Cluster Computing

Bibliography 141

and the Grid, 2005. CCGrid 2005. IEEE International Symposium on, volume 2, pages 676—
685 Vol. 2.

[Farkas and Kacsuk, 2011] Farkas, Z. and Kacsuk, P. (2011). P-grade portal: A generic work-
flow system to support user communities. Future Generation Computer Systems, 27(5):454
—465.

[Ferreira da Silva et al., 2011] Ferreira da Silva, R., Camarasu-Pop, S., Grenier, B., Hamar, V.,
Manset, D., Montagnat, J., Revillard, J., Balderrama, J. R., Tsaregorodtsev, A., and Glatard,
T. (2011). Multi-Infrastructure Workflow Execution for Medical Simulation in the Virtual
Imaging Platform. In HealthGrid 2011, Bristol, UK.

[Ferreira da Silva and Glatard, 2013] Ferreira da Silva, R. and Glatard, T. (2013). A science-
gateway workload archive to study pilot jobs, user activity, bag of tasks, task sub-steps, and
workflow executions. In Caragiannis, 1., Alexander, M., Badia, R., Cannataro, M., Costan,
A., Danelutto, M., Desprez, F., Krammer, B., Sahuquillo, J., Scott, S., and Weidendorfer,
J., editors, Euro-Par 2012: Parallel Processing Workshops (CGWS-2012), volume 7640 of
Lecture Notes in Computer Science, pages 79-88. Springer Berlin Heidelberg.

[Ferreira da Silva et al., 2012] Ferreira da Silva, R., Glatard, T., and Desprez, F. (2012). Self-
healing of operational workflow incidents on distributed computing infrastructures. In Clus-
ter, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM International Symposium
on, pages 318 —325.

[Ferreira da Silva et al., 2013a] Ferreira da Silva, R., Glatard, T., and Desprez, F. (2013a). On-
line, non-clairvoyant optimization of workflow activity granularity on grids. In Wolf, F,,
Mohr, B., and Mey, D., editors, Euro-Par 2013 Parallel Processing, volume 8097 of Lecture
Notes in Computer Science, pages 255-266. Springer Berlin Heidelberg.

[Ferreira da Silva et al., 2013b] Ferreira da Silva, R., Glatard, T., and Desprez, F. (2013b).
Self-healing of workflow activity incidents on distributed computing infrastructures. Fu-

ture Generation Computer Systems. In press.

[Ferreira da Silva et al., 2013c] Ferreira da Silva, R., Glatard, T., and Desprez, F. (2013c).
Workflow fairness control on online and non-clairvoyant distributed computing platforms.
In Wolf, F., Mohr, B., and Mey, D., editors, Euro-Par 2013 Parallel Processing, volume
8097 of Lecture Notes in Computer Science, pages 102—113. Springer Berlin Heidelberg.

[Ferreira da Silva et al., 2013d] Ferreira da Silva, R., Juve, G., Deelman, E., Glatard, T., and
Desprez, F. (2013d). Toward fine-grained online task needs estimation in scientific work-
flows. In The 8th Workshop on Workflows in Support of Large-Scale Science (WORKS’13).
Submitted.

142 Bibliography

[Forestier et al., 2011] Forestier, G., Marion, A., Benoit-Cattin, H., Clarysse, P., Friboulet,
D., Glatard, T., Hugonnard, P., Lartizien, C., Liebgott, H., Tabary, J., and Gibaud, B.
(2011). Sharing object models for multi-modality medical image simulation: A semantic
approach. In Computer-Based Medical Systems (CBMS), 2011 24th International Sympo-

sium on, pages 1 —6.

[Foster, 2005] Foster, 1. (2005). Globus toolkit version 4: software for service-oriented sys-
tems. In Proceedings of the 2005 IFIP international conference on Network and Parallel
Computing, NPC’05, pages 2—-13, Berlin, Heidelberg. Springer-Verlag.

[Foster et al., 2002] Foster, 1., Kesselman, C., Nick, J. M., and Tuecke, S. (2002). The physi-
ology of the grid: An open grid services architecture for distributed systems integration. In
Open Service Infrastructure WG, pages 210-232.

[Foster et al., 2001] Foster, 1., Kesselman, C., and Tuecke, S. (2001). The anatomy of the grid:
Enabling scalable virtual organizations. Int. J. High Perform. Comput. Appl., 15(3):200-222.

[Frisoni et al., 2011] Frisoni, G., Redolfi, A., Manset, D., Rousseau, M., Toga, A., and Evans,
A. (2011). Virtual imaging laboratories for marker discovery in neurodegenerative diseases.
Nature reviews. Neurology, 7(8):429-438.

[Gagliardi et al., 2005] Gagliardi, F., Jones, B., Grey, F., Bégin, M.-E., and Heikkurinen, M.
(2005). Building an infrastructure for scientific grid computing: status and goals of the egee
project. Phil. Trans. R. Soc. A 15, 363(1833):1729-1742.

[Germain-Renaud et al., 2011] Germain-Renaud, C., Cady, A., Gauron, P., Jouvin, M.,
Loomis, C., Martyniak, J., Nauroy, J., Philippon, G., and Sebag, M. (2011). The grid obser-
vatory. IEEFE International Symposium on Cluster Computing and the Grid, pages 114—123.

[Gesing and van Hemert, 2011] Gesing, S. and van Hemert, J., editors (2011). Concurrency
and Computation: Practice and Experience, Special Issue on International Workshop on
Portals for Life-Sciences 2009, volume 23.

[Glatard et al., 2013] Glatard, T., Lartizien, C., Gibaud, B., Ferreira da Silva, R., Forestier,
G., Cervenansky, F., Alessandrini, M., Benoit-Cattin, H., Bernard, O., Camarasu-Pop, S.,
Cerezo, N., Clarysse, P., Gaignard, A., Hugonnard, P., Liebgott, H., Marache, S., Marion,
A., Montagnat, J., Tabary, J., and Friboulet, D. (2013). A virtual imaging platform for multi-
modality medical image simulation. Medical Imaging, IEEE Transactions on, 32(1):110
—-118.

[Glatard et al., 2008] Glatard, T., Montagnat, J., Lingrand, D., and Pennec, X. (2008). Flexi-
ble and Efficient Workflow Deployment of Data-Intensive Applications on Grids with MO-

Bibliography 143

TEUR. International Journal of High Performance Computing Applications (IJHPCA),
22(3):347-360.

[Goldchleger et al., 2004] Goldchleger, A., Kon, F., Goldman, A., Finger, M., and Bezerra,
G. C. (2004). Integrade: object-oriented grid middleware leveraging the idle computing

power of desktop machines. Concurrency and Computation: Practice and Experience,

16(5):449-459.

[Grevillot et al., 2012] Grevillot, L., Bertrand, D., Dessy, F., Freud, N., and Sarrut, D. (2012).
Gate as a geant4-based monte carlo platform for the evaluation of proton pencil beam scan-

ning treatment plans. Physics in Medicine and Biology, 57(13):4223.

[Hirales-Carbajal et al., 2012] Hirales-Carbajal, A., Tchernykh, A., Yahyapour, R., Gonzélez-
Garcia, J. L., Roblitz, T., and Ramirez-Alcaraz, J. M. (2012). Multiple workflow scheduling
strategies with user run time estimates on a grid. Journal of Grid Computing, 10:325-346.

[Hsuet al., 2011] Hsu, C.-C., Huang, K.-C., and Wang, E-J. (2011). Online scheduling
of workflow applications in grid environments. Future Generation Computer Systems,
27(6):860 — 870.

[Huedo et al., 2010] Huedo, E., Montero, R. S., and Llorente, 1. (2010). Grid architecture from
a metascheduling perspective. Computer, 43(7):51-56.

[[lijasic and Saitta, 2009] Iljjasic, L. and Saitta, L. (2009). Characterization of a Computa-
tional Grid as a Complex System. In Grid Meets Autonomic Computing(GMAC’09), pages
9-18.

[losup and Epema, 2011] Iosup, A. and Epema, D. (2011). Grid computing workloads: bags
of tasks, workflows, pilots, and others. Internet Computing, IEEE, 15(2):19 -26.

[losup et al., 2007] losup, A., Jan, M., Sonmez, O., and Epema, D. (2007). The characteristics
and performance of groups of jobs in grids. In Euro-Par, pages 382-393.

[losup et al., 2008] Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., and
Epema, D. H. J. (2008). The grid workloads archive. Future Gener. Comput. Syst.,
24(7):672-686.

[Jan et al., 2011] Jan, S., Benoit, D., Becheva, E., Carlier, T., Cassol, F., Descourt, P., Frisson,
T., Grevillot, L., Guigues, L., Maigne, L., Morel, C., Perrot, Y., Rehfeld, N., Sarrut, D.,
Schaart, D., Stute, S., Pietrzyk, U., Visvikis, D., Zahra, N., and Buvat, I. (2011). Gate
v6: a major enhancement of the gate simulation platform enabling modelling of ct and
radiotherapy. Phys. in Med. and Biol., 56(4):881-901.

144 Bibliography

[Jensen and Svendsen, 1992] Jensen, J. and Svendsen, N. (1992). Calculation of pressure
fields from arbitrarily shaped, apodized, and excited ultrasound transducers. Ultrasonics,
Ferroelectrics and Frequency Control, IEEE Transactions on, 39(2):262 -267.

[Kacsuk, 2011] Kacsuk, P. (2011). P-grade portal family for grid infrastructures. Concurr.
Comput. : Pract. Exper., 23(3):235-245.

[Kacsuk et al., 2012] Kacsuk, P., Farkas, Z., Kozlovszky, M., Hermann, G., Balasko, A.,
Karoczkai, K., and Marton, I. (2012). Ws-pgrade/guse generic dci gateway framework for a

large variety of user communities. Journal of Grid Computing, 10:601-630.

[Kandaswamy et al., 2008] Kandaswamy, G., Mandal, A., and Reed, D. (2008). Fault toler-
ance and recovery of scientific workflows on computational grids. In Cluster Computing
and the Grid, 2008. CCGRID ’08. 8th IEEE International Symposium on, pages 777-782.

[Kearns, 1990] Kearns, M. J. (1990). The Computational Complexity of Machine Learning.
MIT Press.

[Kephart and Chess, 2003] Kephart, J. and Chess, D. (2003). The vision of autonomic com-
puting. Computer, 36(1):41 — 50.

[Kondo et al., 2010] Kondo, D., Javadi, B., Iosup, A., and Epema, D. (2010). The failure trace
archive: Enabling comparative analysis of failures in diverse distributed systems. In CCGrid
2010, pages 398 —407.

[Korkhov et al., 2009] Korkhov, V. V., Moscicki, J. T., and Krzhizhanovskaya, V. V. (2009).
Dynamic workload balancing of parallel applications with user-level scheduling on the grid.
Future Generation Computer Systems, 25(1):28 — 34.

[Krauter et al., 2002] Krauter, K., Buyya, R., and Maheswaran, M. (2002). A taxonomy and
survey of grid resource management systems for distributed computing. Software Practice
and Experience, 32(2):135-164.

[Leporq et al., 2013] Leporq, B., Camarasu-Pop, S., Davila-Serrano, E. E., Pilleul, F., and
Beuf, O. (2013). Enabling 3d-liver perfusion mapping from mr-dce imaging using dis-
tributed computing. Journal of Medical Engineering, 2013:7.

[Lingrand et al., 2010] Lingrand, D., Montagnat, J., Martyniak, J., and Colling, D. (2010).
Optimization of jobs submission on the EGEE production grid: modeling faults using work-
load. Journal of Grid Computing (JOGC) Special issue on EGEE, 8(2):305-321.

[Litke et al., 2007] Litke, A., Skoutas, D., Tserpes, K., and Varvarigou, T. (2007). Efficient
task replication and management for adaptive fault tolerance in mobile grid environments.
Future Generation Computer Systems, 23(2):163 — 178.

Bibliography 145

[Liu and Liao, 2009] Liu, Q. and Liao, Y. (2009). Grouping-based fine-grained job scheduling
in grid computing. In ETCS ’09, volume 1, pages 556 —559.

[Luckow et al., 2010] Luckow, A., Lacinski, L., and Jha, S. (2010). Saga bigjob: An extensible
and interoperable pilot-job abstraction for distributed applications and systems. In Cluster,
Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM International Conference on,
pages 135-144.

[Luckow et al., 2012] Luckow, A., Santcroos, M., Weidner, O., Merzky, A., Maddineni, S.,
and Jha, S. (2012). Towards a common model for pilot-jobs. In Proceedings of the 21st

international symposium on High-Performance Parallel and Distributed Computing, HPDC
12, pages 123—-124, New York, NY, USA. ACM.

[Ma et al., 2013] Ma, J., Liu, W., and Glatard, T. (2013). A classification of file placement and
replication methods on grids. Future Generation Computer Systems, 29(6):1395 — 1406.
Including Special sections: High Performance Computing in the Cloud Resource Discovery

Mechanisms for P2P Systems.

[MacQueen, 1967] MacQueen, J. (1967). Some methods for classification and analysis of mul-
tivariate observations. In Proceedings of the Berkeley Symposium on Mathematical Statistics
and Probability, pages 281-297, Berkeley, CA.

[Malik et al., 1994] Malik, D., Mordeson, J. N., and Sen, M. (1994). On Subsystems of a
Fuzzy Finite State Machine. Fuzzy Sets and Systems, 68(1):83 — 92.

[Marion et al., 2011] Marion, A., Forestier, G., Benoit-Cattin, H., Camarasu-Pop, S., Clarysse,
P., da Silva, R., Gibaud, B., Glatard, T., Hugonnard, P., Lartizien, C., Liebgott, H., Specov-
ius, S., Tabary, J., Valette, S., and Friboulet, D. (2011). Multi-modality medical image
simulation of biological models with the virtual imaging platform (vip). In Computer-Based
Medical Systems (CBMS), 2011 24th International Symposium on, pages 1 —6.

[Medernach, 2005] Medernach, E. (2005). Workload analysis of a cluster in a grid environ-
ment. In Job Scheduling Strategies for Parallel Processing, pages 36—61.

[Missier et al., 2010] Missier, P., Soiland-Reyes, S., Owen, S., Tan, W., Nenadic, A., Dunlop,
L., Williams, A., Oinn, T., and Goble, C. (2010). Taverna, reloaded. In Gertz, M., Hey, T.,
and Ludaescher, B., editors, SSDBM 2010, Heidelberg, Germany.

[Montagnat et al., 2010] Montagnat, J., Glatard, T., Reimert, D., Maheshwari, K., Caron, E.,
and Desprez, F. (2010). Workflow-based comparison of two distributed computing infras-
tructures. In Workflows in Support of Large-Scale Science (WORKS), 2010 5th Workshop
on, pages 1-10.

146 Bibliography

[Montagnat et al., 2009] Montagnat, J., Isnard, B., Glatard, T., Maheshwari, K., and Fornarino,
M. B. (2009). A data-driven workflow language for grids based on array programming

principles. In Proceedings of the 4th Workshop on Workflows in Support of Large-Scale
Science, WORKS ’09, pages 7:1-7:10, New York, NY, USA. ACM.

[Muthuvelu et al., 2010] Muthuvelu, N., Chai, I., Chikkannan, E., and Buyya, R. (2010). On-
line task granularity adaptation for dynamic grid applications. In Hsu, C.-H., Yang, L., Park,
J., and Yeo, S.-S., editors, Algorithms and Architectures for Parallel Processing, volume

6081 of Lecture Notes in Computer Science, pages 266—277. Springer Berlin Heidelberg.

[Muthuvelu et al., 2008] Muthuvelu, N., Chai, 1., and Eswaran, C. (2008). An adaptive and
parameterized job grouping algorithm for scheduling grid jobs. In Advanced Communication
Technology, 2008. ICACT 2008. 10th International Conference on, volume 2, pages 975 —
980.

[Muthuvelu et al., 2005] Muthuvelu, N., Liu, J., Soe, N. L., Venugopal, S., Sulistio, A., and
Buyya, R. (2005). A dynamic job grouping-based scheduling for deploying applications
with fine-grained tasks on global grids. In Proceedings of the 2005 Australasian workshop
on Grid computing and e-research - Volume 44, ACSW Frontiers ’05, pages 4148, Dar-

linghurst, Australia, Australia. Australian Computer Society, Inc.

[Muthuvelu et al., 2013] Muthuvelu, N., Vecchiola, C., Chai, 1., Chikkannan, E., and Buyya,
R. (2013). Task granularity policies for deploying bag-of-task applications on global grids.
Future Generation Computer Systems, 29(1):170 — 181. Including Special section: AIRCC-
NetCoM 2009 and Special section: Clouds and Service-Oriented Architectures.

[Ng, 2006] Ng, H.-F. (2006). Automatic thresholding for defect detection. Pattern Recognition
Letters, 27(14):1644 — 1649.

[Ngetal., 2006] Ng, W. K., Ang, T. F,, Ling, T. C., and Liew, C. S. (2006). Scheduling frame-
work for bandwidth-aware job grouping-based scheduling in grid computing. Malaysian

Journal of Computer Science, 19.

[Nilsson et al., 2011] Nilsson, P., Caballero, J., De, K., Maeno, T., Stradling, A., Wenaus, T.,
and the Atlas Collaboration (2011). The atlas panda pilot in operation. Journal of Physics:
Conference Series, 331(6):062040.

[N’ Takpe and Suter, 2009] N’Takpe, T. and Suter, F. (2009). Concurrent scheduling of parallel

task graphs on multi-clusters using constrained resource allocations. IPDPS *09, pages 1-8.

[Oinn et al., 2006] Oinn, T., Greenwood, M., Addis, M., Alpdemir, M. N., Ferris, J., Glover,
K., Goble, C., Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M. R., Senger,

Bibliography 147

M., Stevens, R., Wipat, A., and Wroe, C. (2006). Taverna: lessons in creating a workflow
environment for the life sciences. Concurrency and Computation: Practice and Experience,

18(10):1067-1100.

[Ostermann et al., 2008] Ostermann, S., Prodan, R., Fahringer, T., Iosup, R., and Epema, D.
(2008). On the characteristics of grid workflows. In CoreGRID Symposium - Euro-Par 2008.

[Pandey et al., 2009] Pandey, S., Voorsluys, W., Rahman, M., Buyya, R., Dobson, J. E., and
Chiu, K. (2009). A grid workflow environment for brain imaging analysis on distributed
systems. Concurr. Comput. : Pract. Exper., 21(16):2118-2139.

[Plankensteiner et al., 2011] Plankensteiner, K., Montagnat, J., and Prodan, R. (2011). Iwir:
a language enabling portability across grid workflow systems. In Proceedings of the 6th

workshop on Workflows in support of large-scale science, WORKS 11, pages 97-106, New
York, NY, USA. ACM.

[Plankensteiner et al., 2009] Plankensteiner, K., Prodan, R., and Fahringer, T. (2009). A new
fault tolerance heuristic for scientific workflows in highly distributed environments based on
resubmission impact. In e-Science, 2009. e-Science *09. Fifth IEEE International Confer-
ence on, pages 313-320.

[Prakosa et al., 2013] Prakosa, A., Sermesant, M., Delingette, H., Marchesseau, S., Saloux, E.,
Allain, P., Villain, N., and Ayache, N. (2013). Generation of synthetic but visually realistic
time series of cardiac images combining a biophysical model and clinical images. Medical
Imaging, IEEE Transactions on, 32(1):99-109.

[Ramakrishnan et al., 2009] Ramakrishnan, L., Koelbel, C., Kee, Y.-S., Wolski, R., Nurmi,
D., Gannon, D., Obertelli, G., YarKhan, A., Mandal, A., Huang, T., Thyagaraja, K., and
Zagorodnov, D. (2009). Vgrads: enabling e-science workflows on grids and clouds with fault
tolerance. In High Performance Computing Networking, Storage and Analysis, Proceedings
of the Conference on, pages 1-12.

[Rehn et al., 2006] Rehn, J., Barrass, T., Bonacorsi, D., Hernandez, J., Semeniouk, I., Tuura,
L., and Wu, Y. (2006). Phedex high-throughput data transfer management system. In Com-
puting in High Energy Physics, CHEP’2006.

[Reilhac et al., 2005] Reilhac, A., Batan, G., Michel, C., Grova, C., Tohka, J., Collins, D.,
Costes, N., and Evans, A. (2005). Pet-sorteo: validation and development of database of
simulated pet volumes. Nuclear Science, IEEE Transactions on, 52(5):1321 — 1328.

[Rogers et al., 2013] Rogers, D., Harvey, 1., Huu, T., Evans, K., Glatard, T., Kallel, I., Taylor,
I., Montagnat, J., Jones, A., and Harrison, A. (2013). Bundle and pool architecture for

148 Bibliography

multi-language, robust, scalable workflow executions. Journal of Grid Computing, pages
1-24.

[Rojas Balderrama et al., 2010] Rojas Balderrama, J., Montagnat, J., and Lingrand, D. (2010).
JGASW: A Service-Oriented Framework Supporting High Throughput Computing and Non-
functional Concerns. In IEEE International Conference on Web Services, ICWS 2010, Mi-
ami (FL), USA. IEEE Computer Society.

[Rojas Balderrama et al., 2011] Rojas Balderrama, J., Truong Huu, T., and Montagnat, J.
(2011). A comprehensive framework for scientific applications execution on distributed

computing infrastructures. In Rencontres Scientifiques France Grilles 2011, Lyon, FR.

[Romanus et al., 2012] Romanus, M., Mantha, P. K., McKenzie, M., Bishop, T. C., Gallichio,
E., Merzky, A., El Khamra, Y., and Jha, S. (2012). The anatomy of successful ecss projects:
lessons of supporting high-throughput high-performance ensembles on xsede. In Proceed-
ings of the 1st Conference of the Extreme Science and Engineering Discovery Environment:
Bridging from the eXtreme to the campus and beyond, XSEDE ’12, pages 46:1-46:9, New
York, NY, USA. ACM.

[Sabin et al., 2004] Sabin, G., Kochhar, G., and Sadayappan, P. (2004). Job fairness in non-
preemptive job scheduling. In Proceedings of the 2004 International Conference on Parallel
Processing, ICPP *04, pages 186—194.

[Shahand et al., 2012] Shahand, S., Santcroos, M., Kampen, A., and Olabarriaga, S. (2012). A
grid-enabled gateway for biomedical data analysis. Journal of Grid Computing, 10:725-742.

[Singh et al., 2008] Singh, G., Su, M.-H., Vahi, K., Deelman, E., Berriman, B., Good, J., Katz,
D. S., and Mehta, G. (2008). Workflow task clustering for best effort systems with pega-
sus. In Proceedings of the 15th ACM Mardi Gras conference: From lightweight mash-ups
to lambda grids: Understanding the spectrum of distributed computing requirements, appli-

cations, tools, infrastructures, interoperability, and the incremental adoption of key capabil-
ities, MG ’08, pages 9:1-9:8, New York, NY, USA. ACM.

[Sommerfeld and Richter, 2011] Sommerfeld, D. and Richter, H. (2011). Efficient Grid Work-
flow Scheduling Using a Two-Tier Approach. In Proceedings of HealthGrid 2011, Bristol,
UK.

[Soni et al., 2010] Soni, V. K., Sharma, R., and Mishra, M. K. (2010). Grouping-based job
scheduling model in grid computing. World Academy of Science, Engineering and Technol-
ogy, 41:781-784.

[Tan et al., 2005] Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduction to Data Min-
ing. Addison-Wesley.

Bibliography 149

[Taylor et al., 2007] Taylor, 1., Shields, M., Wang, 1., and Harrison, A. (2007). The triana
workflow environment: Architecture and applications. In Taylor, I., Deelman, E., Gannon,
D., and Shields, M., editors, Workflows for e-Science, pages 320-339. Springer London.

[Thain et al., 2003] Thain, D., Tannenbaum, T., and Livny, M. (2003). Condor and the Grid,
pages 299-335. John Wiley & Sons, Ltd.

[Thain et al., 2005] Thain, D., Tannenbaum, T., and Livny, M. (2005). Distributed computing
in practice: the condor experience. Concurrency and Computation: Practice and Experi-
ence, 17(2-4):323-356.

[Tsaregorodtsev et al., 2009] Tsaregorodtsev, A., Brook, N., Ramo, A. C., Charpentier, P.,
Closier, J., Cowan, G., Diaz, R. G., Lanciotti, E., Mathe, Z., Nandakumar, R., Paterson,
S., Romanovsky, V., Santinelli, R., Sapunov, M., Smith, A. C., Miguelez, M. S., and Zhele-
zov, A. (2009). DIRAC3. The New Generation of the LHCb Grid Software. Journal of
Physics: Conference Series, 219(6):062029.

[van der Aalst and ter Hofstede, 2005] van der Aalst, W. and ter Hofstede, A. (2005). Yawl:
yet another workflow language. Information Systems, 30(4):245 —275.

[von Laszewski et al., 2010] von Laszewski, G., Fox, G. C., Wang, F., Younge, A. J., Kul-
shrestha, A., Pike, G. G., Smith, W., Voeckler, J., Figueiredo, R. J., Fortes, J., Keahey, K.,
and Delman, E. (2010). Design of the futuregrid experiment management framework. In
GCE2010 at SC10, New Orleans. IEEE, IEEE.

[Wang et al., 2012a] Wang, L., Camarasu-Pop, S., Glatard, T., Zhu, Y.-M., and Magnin, 1. E.
(2012a). Diffusion mri simulation with the virtual imaging platform. In Journées Scien-

tifiques mésocentres et France Grilles 2012, Paris, FR.

[Wang et al., 2012b] Wang, L., Zhu, Y., Li, H., Liu, Y., and Magnin, 1. (2012b). Multiscale
modeling and simulation of the cardiac fiber architecture for dmri. Biomedical Engineering,
IEEE Transactions on, 59(1):16-19.

[Wieczorek et al., 2008] Wieczorek, M., Hoheisel, A., and Prodan, R. (2008). Taxonomies
of the multi-criteria grid workflow scheduling problem. In Grid Middleware and Services,
pages 237-264. Springer US.

[Yu and Buyya, 2005] Yu, J. and Buyya, R. (2005). A taxonomy of workflow management
systems for grid computing. Journal of Grid Computing, 3(3-4):171-200.

[Zhang et al., 2004] Zhang, X., Zagorodnov, D., Hiltunen, M., Marzullo, K., and Schlichting,
R. (2004). Fault-tolerant grid services using primary-backup: feasibility and performance.
In Cluster Computing, 2004 IEEE International Conference on, pages 105 — 114.

150 Bibliography

[Zhang et al., 2009] Zhang, Y., Mandal, A., Koelbel, C., and Cooper, K. (2009). Combined
fault tolerance and scheduling techniques for workflow applications on computational grids.
In Cluster Computing and the Grid, 2009. CCGRID ’09. 9th IEEE/ACM International Sym-
posium on, pages 244-251.

[Zhao and Sakellariou, 2006] Zhao, H. and Sakellariou, R. (2006). Scheduling multiple DAGs
onto heterogeneous systems. IPDPS’06, pages 159-159.

[Zhao et al., 2011] Zhao, X., Hover, J., Wlodek, T., Wenaus, T., Frey, J., Tannenbaum, T., and
Livny, M. (2011). Panda pilot submission using condor-g: Experience and improvements.
Journal of Physics: Conference Series, 331(7):072069.

[Zomaya and Chan, 2004] Zomaya, A. and Chan, G. (2004). Efficient clustering for parallel
tasks execution in distributed systems. In /8th IPDPS, pages 167-174.

FOLIO ADMINISTRATIF

NOM : FERREIRA DA SILVA DATE de SOUTENANCE : 29 Novembre 2013
(avec précision du nom de jeune fille, le cas échéant)

Prénoms : Rafael

TITRE :
A science-gateway for workflow executions:
online and non-clairvoyant self-healing of workflow executions on grids

NATURE : Doctorat Numéro d'ordre : 2013ISALO115

Ecole doctorale : Ecole Doctorale InfoMaths (ED 512)

Spécialité : Informatique

RESUME :

Les science-gateways, telles que la Plate-forme d’Imagerie Virtuelle (VIP), permettent I’acces a un grand nombre de ressources de calcul et
de stockage de manicre transparente. Cependant, la quantité d’informations et de couches intergicielles utilisées créent beaucoup d’échecs et
d’erreurs de systeme. Dans la pratique, ce sont souvent les administrateurs du systéme qui contrdlent le déroulement des expériences en
réalisant des manipulations simples mais cruciales, comme par exemple replanifier une tiche, redémarrer un service, supprimer une
exécution défaillante, ou copier des données dans des unités de stockages fiables. De cette manicre, la qualité de service fournie est correcte
mais demande une intervention humaine importante.

Automatiser ces opérations constitue un défi pour deux raisons. Premi¢rement, la charge de la plate-forme est en ligne, c’est-a-dire que de
nouvelles exécutions peuvent se présenter a tout moment. Aucune prédiction sur I’activité des utilisateurs n’est donc possible. De fait, les
modeles, décisions et actions considérés doivent rester simples et produire des résultats pendant 1’exécution de I’application. Deuxi¢émement,
la plate-forme est non-clairvoyante a cause du manque d’information concernant les applications et ressources en production. Les ressources
de calcul sont d’ordinaire fournies dynamiquement par des grappes hétérogenes, des clouds ou des grilles de volontaires, sans estimation
fiable de leur disponibilité ou de leur caractéristiques. Les temps d’exécution des applications sont difficilement estimables également, en
particulier dans le cas de ressources de calculs hétérogenes.

Dans ce manuscrit, nous proposons un mécanisme d’auto-guérison pour la détection autonome et traitement des incidents opérationnels dans
les exécutions des chalnes de traitement. Les objets considérés sont modélisés comme des automates finis a états flous (FuSM) ou le degré
de pertinence d’un incident est déterminé par un processus externe de guérison. Les modeles utilisés pour déterminer le degré de pertinence
reposent sur I’hypothése que les erreurs, par exemple un site ou une invocation se comportant différemment des autres, sont rares. Le
mécanisme d’auto-guérison détermine le seuil de gravité des erreurs a partir de ’historique de la plate-forme. Un ensemble d’actions
spécifiques est alors sélectionné par regle d’association en fonction du niveau d’erreur.

MOTS-CLES : Détection autonome et traitement des erreurs, exécutions des chalnes de traitement, systemes distribués en production.

Laboratoire (s) de recherche : Laboratoire CREATIS — CNRS UMR 5220 — INSERM U1044

Directeur de these: Frédéric DESPREZ, Tristan GLATARD

Président de jury :

Composition du jury :
Eric RUTTEN, Frédéric DESPREZ, Tristan GLATARD, Silvia D. OLABARRIAGA, Johan MONTAGNAT, Hugues BENNOIT-CATTIN,
Martin QUINSON

152

	Introduction
	State of the art
	Infrastructure and software for science-gateways
	Self-healing of workflow executions on grids
	Conclusions

	I A science-gateway for workflow executions on grids
	A science-gateway for workflow executions on grids
	Introduction
	VIP architecture for workflow execution
	Platform usage
	Challenges and limitations
	Conclusion

	A science-gateway workload archive
	Introduction
	A Science-Gateway Workload Archive
	Case studies
	Conclusion

	II Self-healing of workflow executions on grids
	A self-healing process for workflow executions on grids
	Introduction
	General healing process
	Illustration on task errors
	Improvements to mode detection
	Conclusion

	Handling blocked activities
	Introduction
	Slope Contraction
	Median Estimation
	Conclusion

	Optimizing task granularity
	Introduction
	Task Granularity Control Process
	Experiments and Results
	Conclusion

	Controlling fairness among workflow executions
	Introduction
	Fairness control process
	Experiments and results
	Conclusion

	III Conclusions
	Conclusion and perspectives
	Contributions summary
	Concluding remarks and future directions

	IV Appendix
	Applications description
	FIELD-II
	Mean-Shift
	SimuBloch
	PET-Sorteo
	GATE

	Bibliography

