
Asterism: Pegasus and dispel4py hybrid workflows for
data-intensive science

Rosa Filgueira1, Rafael Ferreira da Silva2, Amrey Krause3

Ewa Deelman2, Malcolm Atkinson4

1British Geological Survey, Lyell Centre, Edinburgh EH14 4AP
2University of Southern California, Information Sciences Institute, Marina Del Rey, CA, USA

3EPCC, University of Edinburgh, Edinburgh EH8 9LE, UK
4School of Informatics, University of Edinburgh, Edinburgh EH8 9LE, UK

rosa@bgs.ac.uk, {rafsilva,deelman}@isi.edu, a.krause@epcc.ed.ac.uk,
malcolm.atkinson@ed.ac.uk

ABSTRACT
We present Asterism, an open source data-intensive frame-
work, which combines the strengths of traditional work-
flow management systems with new parallel stream-based
dataflow systems to run data-intensive applications across
multiple heterogeneous resources, without users having to:
re-formulate their methods according to different enactment
engines; manage the data distribution across systems; par-
allelize their methods; co-place and schedule their methods
with computing resources; and store and transfer large/small
volumes of data. We also present the Data-Intensive work-
flows as a Service (DIaaS) model, which enables easy data-
intensive workflow composition and deployment on clouds
using containers. The feasibility of Asterism and DIaaS

model have been evaluated using a real domain application
on the NSF-Chameleon cloud. Experimental results shows
how Asterism successfully and efficiently exploits combina-
tions of diverse computational platforms, whereas DIaaS de-
livers specialized software to execute data-intensive applica-
tions in a scalable, efficient, and robust way reducing the
engineering time and computational cost.

Keywords
Data-Intensive science, scientific workflows, stream-based sys-
tem, deployment and reusability of execution environments

1. INTRODUCTION
In the era of Big Data Science, research campaigns are

producing and consuming ever-growing data sets (e.g., mod-
els, raw data, etc.). These campaigns are considered data-
intensive applications due to the large amount of data they
analyze (or use), or due to the number of I/O operations in-
volved in their executions. Data-Intensive applications need
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to be executable; that is, they need to (1) fetch their large
set of input data from the wide area (e.g., data reposito-
ries); (2) apply methods between live (real-time produced
data) and archived data applications (3) move data between
stages when necessary; (4) perform computations (in a single
computing resource or across several ones) for simulation,
data preparation, analyses, and presentation; (5) clean-up
the data that is not necessary for the execution; (6) store
final results together with user-selected intermediates; and
(7) provide a framework for diagnosis, validation, visualiza-
tion, and the use of end-results [2].

Over the last years, scientific workflows have emerged
as an important abstraction that allows scientists to eas-
ily model and express their data-intensive application with
their dependencies. As a result, many scientific workflow
management systems (WMSs) have been developed, and
they have been intensively used by various research com-
munities, e.g., astronomy, biology, computational engineer-
ing [28]. However, they usually address a set of the previous
needs for modeling a data-intensive application. For exam-
ple, coarse-grained composition workflow systems, such as
Pegasus [8], are mainly mechanisms to organize and dis-
tribute computation regardless of the application language,
or the target computing infrastructure. Alternatively, paral-
lel dataflow systems (e.g., dispel4py [17]) have the ability to
model the movement of data and methods as a series of con-
nection (inputs and outputs), enabling concurrent pipelined
and task parallelism, so tasks can execute as soon as the
required resources are available. However, unlike coarse-
grained WMSs, parallel datalfow systems often do not pro-
vide capacities to run workflows across e-Infrastructures.

In this paper, we present Asterism, a hybrid framework
that provides facilities to run data-intensive stream-based
applications across platforms on heterogeneous systems. As-
terism provides simple and flexible high-level programming
abstractions for coordination, data access, and data exchange.
It blends the benefits of dispel4py with Pegasus systems:

• Pegasus is a mature, scalable, and robust task-oriented
WMS, which offers facilities to run workflows on het-
erogeneous systems. These features have been demon-
strated through wide number of applications and projects
(e.g., LIGO gravitational wave detection analysis [27]);

• dispel4py is a new abstract parallel stream-based dataflow



system that has demonstrated its benefits by describ-
ing several applications during the VERCE [31] project.
It offers mappings to several enactment engines used
in HPC and data-intensive computing without users
having to modify their codes, and it also smooths tran-
sitions from local development to scalable executions.

Therefore, the stream-based executions of an Asterism

workflow are managed by dispel4py, while the data move-
ment between different execution infrastructures, and the
coordination of the application execution are automatically
managed by Pegasus.

Complementary to Asterism, we present the Data Inten-
sive Workflow as a Service (DIaaS) model to provide scien-
tists with a flexible and easy-to-use environment for running
scientific applications within containers. In this model, all
required software (workflow systems and execution engines)
are packed into the containers, which significantly reduces
the effort (and possible human errors) required by scientists
or platform administrators to build such systems.
The rest of this paper is organized as follows. Section 2 pro-
vides background on scientific workflows, and the two work-
flow management systems used in this work, and highlights
related work. Section 3 presents the Asterism framework,
its functionalities, and main advantages. The experimen-
tal evaluation using Docker containers and a real workflow
application are presented in Section 4. Section 5 describes
the Data-Intensive workflow as a Service (DIaaS) model, and
Section 6 summarizes our results and identifies future work.

2. BACKGROUND AND RELATED WORK
In this section, we introduce the main concepts, tools and

relevant works, which are the foundations of this work.

2.1 Scientific workflows
Today’s computational and data science applications pro-

cess vast amounts of data for conducting large-scale simula-
tions of underlying science phenomena. These applications
may comprise thousands of computational tasks and process
large datasets, which are often distributed and stored on het-
erogeneous resources. Scientific workflows have emerged as
a flexible representation to declaratively express such com-
plex applications with data and control dependencies, and
have become mainstream in a number of different science
domains [28]. In spite of impressive achievements to date,
constructing workflows and orchestrating their executions
on heterogeneous systems remain a fundamental challenge.
As a result, many workflow management systems (WMSs)
have been developed to fulfill specific requirements of differ-
ent scientific communities [1,8,13,17,21,22,25,34]. Although
these systems have a common goal, they often do not share
all capabilities across different e-Infrastructures.

Typically, most WMSs support task-oriented workflows [1,
8, 13, 21, 22, 34], where the predominant model has stages
that correspond to tasks, and the workflow organizes its en-
actment on a wide range of distributed computing infras-
tructures, normally arranging data transfer between stages
via files. On the other hand, the growing volumes of scien-
tific data, the increased focus on data-driven science and the
achievable storage density doubling every 14 months (Kry-
der’s Law [33]), severely stresses the available disk I/O –
or more generally the bandwidth between RAM and exter-
nal devices. This is driving increased adoption of stream-
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Figure 1: Overview of the Pegasus architecture.

based [17, 25] for implementing data-intensive applications,
as these avoid a write out to disk followed by reading in,
or double that I/O load if files have to be moved. Signifi-
cantly reducing the cost of data movement between stages
makes it economic to compose very simple stages, e.g. for-
mat changes, which potentially intermingle with much more
demanding stages. However, they are few stream-based sys-
tems that proive facilities to run applications across het-
erogenous systems, as we aim with Asterism. One of them,
is the Storm extension presented in [24], which allows the
generation of data stream processing applications that op-
erate in a distributed Cloud environment. But this extension
only enables to run Storm topologies across Clouds, whereas
Asterism enables to map automatically Asterism workflows
to Storm, MPI and Multiprocessing engines and across to a
wide range of e-Infrastructures (e.g. Clouds, Clusters, Grid).

2.2 Pegasus
Pegasus [8] focuses on scalable, reliable, and efficient work-

flow execution on a wide range of systems, from the user’s
desktop to state-of-the-art high-throughput and high-perfor-
mance computing systems. Pegasus bridges the scientific
domain and the execution environment by automatically
mapping high-level abstract workflows descriptions onto dis-
tributed resources. In Pegasus, workflows are described ab-
stractly as directed acyclic graphs (DAGs), where the nodes
are tasks and the edges are dependencies (often data depen-
dency). The abstract workflow do not have any information
regarding physical resources or physical locations of data
and executables. The abstract workflow description is rep-
resented as a DAX (DAG in XML), describing all tasks, their
dependencies, their required inputs, their expected outputs,
and their invocation arguments.

Figure 1 shows the main components of the Pegasus frame-
work. The Workflow Mapper plans the workflow execution.
During execution, Pegasus translates the abstract workflow
into an executable workflow, determining the executables,
data, and computational resources required for the execu-
tion. Pegasus maps executables to their installation paths
or to a repository of stageable binaries defined in a cata-
log. Workflow execution with Pegasus includes data man-
agement, monitoring, and failure handling, and is managed
by DAGMan [18]. Individual workflow tasks are managed
by a task scheduler (HTCondor [29]), which supervises their
execution on local and remote resources, including campus
and national cyberinfrastructures, grids, and clouds.



Table 1: Main capabilities and paradigms of dispel4py and Pegasus workflow management systems.

Capabilities dispel4py Pegasus

Description Abstract workflow language that maps at runtime to
different enactment platforms and automatically par-
allelizes the workflow making use of the number of
cores/processes available

Maps abstract workflows to executable workflows that
can be executed by Condor DAGMan in heterogenous
platforms. Performs optimizations for performance and
reliability

Target Enables scientists to focus on their scientific goals, avoid-
ing distracting details and retaining flexibility over the
computing infrastructure they use. Users only have to
express their computational needs and connect them

Distributes compute-intensive workflows and handles au-
tomatic data transfer across computing resources. It can
be seen as layer on top of DAGMan with capabilities for
provenance, monitoring, and failure recovering

Nodes Processing Elements (PEs), which are Python Objects Jobs, which are executables (black box) of any type (bash
scripts, python, C++, etc.)

Data transferred Memory/stream Files (I/O). It also supports remote I/O

External storage (data
access)

Work in progress Key element of Pegasus

Language Python for describing PEs and their connections DAX API in Python, Java, R, Perl

Parallelism Automatic parallelism of PEs Parallelism of nodes (jobs)

Application Application modeled as a single workflow Application modeled as N jobs

Distributed heteroge-
neous platforms

Not supported N computing resources and types

Execution platforms Sequential, MPI, Multiprocessing, Storm, Spark Condor (DAGMan), PBS, SGE, etc.

Workflow scheduling Workflow scheduled as one job Static scheduling of workflow jobs

Conditional execution Supports conditional execution of PEs Not supported

Concurrent execution Supports concurrent pipeline execution Not supported

Failure recovering Not supported Supports failure recovering and check points at the work-
flow and application levels

Task/PE scheduling Work in progress Supports task scheduling and sub-workflows

Monitoring Work in progress Workflow- and task-level monitoring

2.3 dispel4py
The dispel4py system [17] is a parallel stream-based dataflow

framework for formulating and executing data-intensive meth-
ods. It is based on a simple and abstract model of the logic
required. That abstract model carefully eliminates details of
target platforms and data-handling steps that can be auto-
mated. dispel4py is a Python implementation of the Dispel
language to reach the extensive community of Python users.
In contrast to Dispel, dispel4py not only constructs and
describes abstract workflows, but encapsulates executables
as Python objects. The model comprises nodes, called Pro-
cessing Elements (PEs), connected through data streams.
The PEs process units of data from each of their inputs,
and emit units of data on each of their outputs. Each data
stream carries a sequence of data units from its source, nor-
mally a PE’s output port, to all of the input ports to which
it is connected.

One of dispel4py’s strengths is the ability to construct
abstract workflows with no knowledge of the underlying exe-
cution infrastructure—this approach enables portability across
different computing platforms without any migration cost
imposed to users. Users can therefore focus on the de-
sign of their workflows, describing actions, input and output
streams, and their connections. dispel4py then maps these
descriptions to the enactment platforms. Currently, dis-

pel4py provides mappings for Apache Storm [12], MPI [26],
and Multiprocessing, as well as a Sequential mapping for de-
velopment and small applications.

Table 1 highlights the main capabilities and differences
between both, dispel4py and Pegasus, workflows systems.

2.4 Container Orchestration
Recently, Linux container technology has gained atten-

tion as it promises to transform the way software is shared,
reused, developed, and deployed [19, 35]. The portability
and ease of deployment makes Linux containers an ideal
technology to be used in scientific workflow platforms. They
are a form of virtualization that uses advanced kernel fea-
tures, mainly namespaces and cgroups, to define different
user spaces on top of a single kernel space. Docker [10] is
a new but already very popular open source tool that com-
bines: (1) performing Linux container (LXC) based operat-
ing system level virtualization, (2) portable deployment of
containers across platforms, (3) component reuse, (4) shar-
ing, (5) archiving, and (6) versioning of container images [6].

A particular advantage of Docker containers is that the re-
sulting computational environment is immediately portable.
Docker handles the packaging and execution of a container
so that it works identically across different machines, while
exposing the necessary interfaces for networking ports, vol-
umes, and so forth, allowing other users to reconstruct the
same computational environment. Additionally, Docker tech-
nology provides a convenient distribution service called The
Docker Hub [11], which freely stores the pre-built images,
along with their metadata, for download and reuse by others.
Therefore, we have selected Docker containers to provide the
Asterism framework with portability, easiness composition,
and scalability across different e-Infrastructures.

Running workflows in cloud platforms have been the sub-
ject of several studies [7,9,22,32], however they focus solely
on a single workflow management system, and use emulation



of a particular computer system (virtual machines).

3. ASTERISM: HYBRID WORKFLOWS FOR
DATA-INTENSIVE APPLICATIONS

Asterism is a hybrid framework composed by Pegasus

and dispel4py workflow systems. Asterism greatly sim-
plifies the effort required to develop data-intensive applica-
tions that run across multiple heterogeneous resources dis-
tributed in the wide area, without its users having to (1) re-
formulate their methods according to different enactment
engines; (2) manage the data-distribution across systems;
(3) parallelize their methods; (4) co-place and schedule their
methods with computing resources; and (5) store and trans-
fer large/small volumes of data.

They key element of Asterism is that the selected WMSs
complement each other’s strengths (Table 1). On one hand,
dispel4py allows developing scientific applications locally
and then automatically parallelize and scale them on a wide
range of e-infrastructures and enactment engines without
any changes to the codes. On the other hand, Pegasus or-
chestrates the distributed execution of applications across
e-Infrastructures offering capabilities such as portability, au-
tomated data management, recovery, debugging, and moni-
toring, without its users needing to worry about the partic-
ulars of the target execution systems.

We propose to represent the different parts that compose a
complex multi-stage data-intensive application (e.g., prepro-
cess, process, post-process, etc.) as dispel4py workflows,
and use Pegasus to connect to orchestrate the distribution
and execution of each dispel4py workflow (mapped as a
task in Pegasus). The different levels of abstractions pro-
vided by both workflow management systems allow users to
focus on the design of their applications at an abstract level,
describing actions, input, and output streams; how the ac-
tions are connected; and in which computing resources the
actions (or a set of them) should be executed. The stream-
based execution is then managed by dispel4py, while the
data movement between different execution platforms and
the workflow engine (submit host) is managed by Pegasus.
Figure 2 shows this process, in which an application is ini-
tially modeled with dispel4py by using three PEs. Later,
these PEs are mapped into Pegasus tasks (P1 and P2 into
task T1, and P3 into task T2 ), representing then an As-

terism workflow. Asterism users need to indicate for each
Pegasus task which PEs should be wrapped in, which site
each task should be executed, and with which dispel4py

mapping the task should be mapped to. Asterism then ex-
ecutes each Pegasus task in the specified execution sites (in
Figure 2, Site A and Site B), with the corresponding dis-

pel4py mapping (in Figure 2, MPI and Storm), and man-
ages data movement between sites. Note that the hybrid
workflow may also contain regular Pegasus tasks.

4. EXPERIMENTAL EVALUATION
In this section, we present a practical evaluation through

the instantiation of an Asterism workflow. We first describe
the Seismic Ambient Noise Cross-Correlation workflow as
a use case to demonstrate the feasibility of our solution—
it represents a data-intensive problem commonly faced by
seismology researchers; and then we describe the execution
environments implemented as Docker containers.
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Figure 2: Overview of the Asterism hybrid workflow
framework.

4.1 Case Study: Seismic ambient noise cross-
correlation

The Seismic Ambient Noise Cross-Correlation application
represents a common data-intensive analysis pattern used by
many seismologists [15]. The application preprocesses and
cross-correlates traces (sequences of measurements of accel-
eration in three dimensions) from multiple seismic stations,
and it is composed of two main phases:

• Phase 1 (Preprocess): Each time series from a seis-
mic station (each trace), is subject to a series of data-
preparation treatments chosen and parameterized by
seismologists; and the processing of each trace is inde-
pendent from other traces. (complexity O(n), where n
is the number of stations).

• Phase 2 (Cross-Correlation): For all pairs of stations
compute the correlation, essentially identifying the time
for signals to travel between them, and hence infer
some, as it turns out time varying, properties of the in-
tervening rock. The complexity of this phase is O(n2).
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Both phases, Phase 1 and Phase 2, do not have to be nec-
essarily performed in the same computing resource. In fact,
scientific communities like Seismology, tend to use a wide
range of e-Infrastructures for running their data-intensive
applications, e.g., national cyberinfrastructures, and cloud
resources, because data can be streamed to and from sev-
eral e-Infrastructures to perform various analyses. There-
fore, there is a need to facilitate and automate the process
to run data-intensive applications across heterogeneous sys-
tems, without users making changes to their codes. In the
case of the application presented here, quite often raw data
is aggregated/collected (data assimilation) in a resource ma-
chine (desktop, small-middle cluster) during the period of
time to perform Phase 1 analysis, followed (in some cases)
by removing the raw data if no longer required. Later, pre-
processed data could be transferred to a larger resource (e.g.,
HPC cluster or cloud) with higher number of CPU cores and
memory capacity, where Phase 2 is applied. Additionally, it
would be possible to distribute the preprocessed data to dif-
ferent computing resources to perform several data analyses
in parallel.

The Seismic Ambient Noise Cross-Correlation application
was originally programmed as part of the VERCE project [16]
using dispel4py as shown in Figure 3—both phases run on
the same computing resource. With Asterism, we can dis-
tribute the execution among heterogeneous systems, lever-
aging their capabilities to efficiently run the applications.

4.2 Asterism Workflow Implementation
The Asterism representation of the Seismic Ambient Noise

Cross-Correlation workflow is composed of a Pegasus work-
flow (DAX) with two tasks, wrapping the Phase1 (Figure 3a)
and Phase2 (Figure 3b) dispel4py workflows into the first
and second Pegasus tasks, respectively. The DAX also con-
tains the description of the input and output files (stations
list, preprocessed data, and cross-correlation results) at a
logical level, the data dependency between tasks (the prepro-
cess task is followed by the execution of the process task), the
computing sites for executing each task (MPI and Apache
Storm clusters), and the mapping to run each dispel4py

workflow (MPI and Apache Storm mappings, respectively).
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During execution, the Pegasus Mapper generates an ex-
ecutable workflow able to run on the requested computing
resources. The Mapper also creates additional jobs to stage
in/out the input/output data; data cleanup nodes to remove
data that is no longer required; and registration nodes to cat-
alog output data locations for future discovery (provenance).
The workflow is then submitted to DAGMan, which orches-
trates the workflow execution, spawning jobs to HTCondor
when all dependencies have been satisfied.

The Asterism workflow is packaged with all of its de-
pendencies (Pegasus, HTCondor, dispel4py, etc.) into a
conceptual Docker container (Container 1, Figure 4). To
demonstrate the versatility of Asterism to run workflows
in heterogeneous systems, we created two additional con-
ceptual Docker containers: an MPI cluster (Container 2,
Figure 5), and an Apache Storm cluster (Container 3, Fig-
ure 6) execution environments. Phase1 runs in a multi-
container Docker application based on Container 2, while
Phase2 runs in a multi-container Docker application based
on Container 3. During execution, each dispel4py work-
flow is mapped to the particular execution engine indicated
in the DAX (MPI or Apache Storm for this example), and
data transfers between execution environments (or contain-
ers) are automatically handled by Pegasus, as well as the
monitoring of the Asterism workflow execution. Data access
is performed through a local shared folder with the execu-
tion system (from where Pegasus stages the data). Future
work includes the full integration and management of Docker
containers into Pegasus. For this experiment, the containers
were manually deployed and configured. In the future, we
plan to use experiment management tools such as Precip [4]
to automate this step.

Container 2 (Figure 5) is configured to deploy an MPI
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Figure 5: Container 2 provides the execution envi-
ronment necessary for running dispel4py workflows
and MPI applications.

cluster as a multi-container application, where one instance
represents the head node, and the remaining instances the
worker nodes. Additionally to the MPI capabilities, the con-
tainer also provides dispel4py for running the stream-based
workflows, and ObsPy [5], an open-source framework for pro-
cessing seismological data. Container 3 (Figure 6) also pro-
vides dispel4py and ObsPy for running the specific applica-
tion phase. However, it is configured to deploy an Apache
Storm cluster as a multi-container application. In this case,
it provides an instance of the Apache ZooKeeper [20] (an
open-source distributed configuration and synchronization
service, and naming registry for large distributed systems),
one instance for the master node (nimbus), one instance of
the Storm user interface (Storm UI), and several supervisors
(workers).

Note that these containers are interchangeable, i.e. they
can run both phases of the Seismic Ambient Noise Cross-
Correlation application. Although the explicit separation of
the phases into two different execution environment is pri-
marily to demonstrate the feasibility and flexibility of the
Asterism approach, the execution of Phase 2 in an Apache
Storm cluster leverages the capability of the system to han-
dle dynamic streams. Asterism benefits from the docker-

compose command to automatically build dynamic virtual

Execution environment -- Container 3- Storm,dispel4py, Obspy
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private networks between the nodes composing the execu-
tion cluster (MPI or Storm). Furthermore, the this com-
mand allows to scale the number of instances at runtime. A
traditional MPI-like environment would not benefit of such
functionality due to its static behavior. On the other hand,
real-time platforms such as Apache Storm would greatly
benefit of it to scale the number of computing nodes (Storm
supervisors) at runtime using a single and simple command.

4.3 Asterism Workflow Execution
For running the described Asterism workflow we have

used the academic NSF-Chamelon cloud testbed [23]. We
used CentOS7 images with Docker, and since our allocation
in NSF-Chamelon was established to 40 nodes, we decided
to distribute them equitably as follows: an instance of Con-
tainer 1 as the Pegasus submit node; an instance of Con-
tainer 2 as the MPI head node, 16 instances of Container
2 as the MPI worker nodes; instances of Container 3 as the
Storm Apache ZooKeeper, nimbus, and Storm UI; and 16
instances of Container 3 as the Storm supervisors.

The containers images were configured with Dockerfiles,
which are scripts to build and configure containers, step-
by-step, layer-by-layer, automatically from a source (base)
image. All Dockerfiles used to generate the three types of



containers are freely available online as part of the research
object (RO) of this work [3]. The repositories also provide
additional information such as detailed instructions on how
to deploy and run the images, and the workflow. Further-
more, we linked our GitHub repositories to the The Docker
Hub for providing Continuous Integration (CI), and allow-
ing to directly store and share the images, without the need
of build them manually in a local environment. Our reposi-
tory also includes an easy-to-use script listing the commands
needed to test and run the Seismic Cross Correlation As-

terism workflow, and to deploy the three Docker containers
described above (all the scripts and images are also available
as part of the RO [3]).

The execution of the Asterism workflow requested an hour
data from IRIS services (USArray TA [30]). The USAr-
ray TA has a list of 836 stations, though only 394 stations
have online data available. The experimental evaluations
(10 runs of the workflow were performed for statistical sig-
nificance purpose) have reported that the time consumed by
the Phase 1 using Container 2 is about 8 minutes, around
2 hours by the Phase 2 using Container 3, and under a
minute for moving data between containers. In order to
evaluate long running workflows, we also ran the Asterism

workflow continuously during 3 days, where requests for the
seismic data from IRIS services were performed every two
hours. Note that the scope of this work is to show the abil-
ity of Asterism to efficiently run a data-intensive application
in heterogeneous systems with different enactment engines.
Thus, we have shown that the Asterism framework is able
to manage the entire workflow, to monitor its execution,
to handle data transfers between different platforms, and
to map to different enactment engines at runtime with no
additional effort required from the users to run the applica-
tion in different contexts. Asterism, therefore, provides an
absolutely abstraction of the selected compute resource(s)
and their technical details. For maximizing the application’s
performance, other configurations could be considered (e.g.,
running both phases in the MPI cluster, or increasing the
number of Storm Supervisors).

5. DATA-INTENSIVE WORKFLOWS AS A
SERVICE

The Asterism framework combined with Docker contain-
ers provide an integrated, complete, easy-to-use, portable
approach to run data-intensive workflow applications on dis-
tributed platforms. The three containers designed and im-
plemented for the use case described in this paper (Fig-
ures 4, 5, and 6) integrate the “Data-Intensive workflows as
a service” (DIaaS) model that delivers data-intensive work-
flow applications over the wide-area. In a DIaaS model,
the framework delivers specialized software to execute data-
intensive applications in a scalable, efficient, and robust
manner. Since all the software needed for running Aster-

ism workflows and their dependencies are packed in DIaaS

model, it substantially reduces the time (and the possible
human errors) spend by scientists to build such systems by
themselves, which consequently allow them to focus in their
research. Note that many research campaigns develop and
refine models of the phenomena of interest by using numer-
ical simulations to expose the implications of mathematical
models intricate combinations with observations that pro-
vide initial conditions. Analysis of the differences between

synthetic and observed values leads to corrections that need
to be propagated into the model. Such methodological pat-
terns are pursued repeatedly for sets of initial conditions and
multiple observation comparisons until the model reaches
stability or the limit of resolution in the context being stud-
ied. Asterism DIaaS model improves the productivity for
such campaigns by being able to encode and enact more as-
pects of a research campaign into one workflow by using an
easy-to-use data-intensive model.

The most common use of the Asterism DIaaS framework
will be the execution of workflow applications on virtualized
environments such as cloud computing, due to its ability to
easily scale the number of computing resources (e.g., MPI
workers or Storm supervisors). Users can then download
and deploy the Asterism framework in any cloud platform,
or computing environment (where Docker is supported), and
extend our base images for running their own data-intensive
applications seamlessly.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented Asterism, an integrated and

complete approach for running data-intensive workflow ap-
plications on distributed heterogeneous systems. Asterism

provides a framework into which an ever-growing range of
target platforms will fit. It carefully avoids the encoding of
the research methods being shaped by these targets, as they
are evolving rapidly.

By leveraging the capabilities of two widely used workflow
management systems (Pegasus and dispel4py), we devel-
oped a hybrid workflow approach to enable the execution of
data-intensive stream-based workflow applications across dif-
ferent e-Infrastructures. The feasibility of the approach was
evaluated using a seismic ambient noise cross-correlation
application, which is a real data-intensive workflow, and het-
erogeneous e-Infrastructures described as Docker containers,
which were deployed and executed in an academic cloud.
From the containers, we derived a Data-Intensive workflow
as a Service (DIaaS) model to enable easy composition and
deployment of data-intensive workflows on cloud platforms.

Future works include the development of a portfolio of
e-Infrastructures to be distributed as part of the Asterism

DIaaS framework besides Apache Storm and the MPI-based
cluster. To ease the framework usage, we also plan to pro-
vide Asterism via an experiment management tool (e.g.,
Precip [4]), where the entire infrastructure would be de-
ployed automatically using a single and simple command—
the user will be prompted with basic questions (e.g., the
number of worker nodes, etc.), and the tool would deliver
the requested environment. Finally, we also intend to dis-
tribute Asterism as part of our community resources for
enabling research on scientific workflows [14].
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